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ABSTRACT
Homeowners may spend up to ⇠$375 to diagnose their damaged
rooftop solar PV systems. Thus, recently, there is a rising inter-
est to inspect potential damage on solar PV arrays automatically
and passively. Unfortunately, current approaches may not reliably
distinguish solar PV array damage from other degradation (e.g.,
shading, dust, snow). To address this issue, we design a new system—
SolarDiagnostics that can automatically detect and pro�le damages
on rooftop solar PV arrays using their rooftop images with a lower
cost. We evaluate SolarDiagnostics by building a lower cost (⇠$35)
prototype and using 60,000 damaged solar PV array images. We
�nd that pre-trained SolarDiagnostics is able to detect damaged
solar PV arrays with a Matthews Correlation Coe�cient of 0.95.

CCS CONCEPTS
• Computing methodologies ! Model development and
analysis; Modeling methodologies; Model veri�cation and
validation.

KEYWORDS
Solar Energy, Machine Learning, Deep Learning, Image Processing

ACM Reference Format:
Qi Li, Keyang Yu, Dong Chen. 2020. Automatic Damage Detection on
Rooftop Solar Photovoltaic Arrays. In The 7th ACM International Conference
on Systems for Energy-E�cient Buildings, Cities, and Transportation (BuildSys
’20), November 18–20, 2020, Virtual Event, Japan. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3408308.3431130

1 INTRODUCTION
Solar owners may spend up to $375 on the services to maintain
their “degraded” rooftop solar PV systems, including damaged so-
lar PV panel inspection, wiring damage, annual inspection, dam-
age localization, and solar PV array cleaning, which typically are
not covered in their purchase warranty. Thus, recently, there is
a rising interest to inspect potential damage on rooftop solar PV
arrays automatically and passively with a lower cost. Traditional
approaches [2, 6, 8], which are replying on I-V curve and P-V char-
acteristic monitoring of solar PV system, require user expertise
in measuring model parameters and hardware installation (e.g.,
cameras, solar radiation sensors) to collect training data. While,
signi�cant recent work focuses on data-driven approaches [3, 5, 7]
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Figure 1: The pipeline overview of SolarDiagnostics.
require signi�cant amount of historical solar generation data, which
may not be available due to the new sites become online, to cali-
brate their models, and also can not accurately distinguish solar
array damage from other degradation (e.g., shading, snow). To ad-
dress this issue, we design a new system—SolarDiagnostics that
can automatically detect and localize damage on solar PV arrays
with a lower cost. Our hypothesis is that solar PV arrays are visu-
ally identi�able in their rooftop images such that we can leverage
image processing and deep learning techniques to automatically
pro�le information. Our evaluation shows that SolarDiagnostics
can accurately detect damaged rooftop solar PV arrays and also
learn the damage pro�ling information for each solar site.

2 PROBLEM STATEMENT
Given a solar-powered home, we �rst build a new approach that
can automatically fetch its rooftop image. We then present a new
approach that can accurately segment rooftop objects and focus
on solar panel residing contours in each image. We further seek to
build a deep learning classi�er to accurately identify the damage
on solar PV array. For each reported array, we also want to pro�le
its damage information, such as damage location, damage level and
manufacture brand, which can be used to assist solar owners to
repair or replace their solar PV arrays promptly. Formally, given
a solar PV array-powered home (8 , we �rst need to segment its
rooftop objects $8 (1 <= 8 <= # ) on rooftop image �8 into small
“contours”—⇠8 , where # is the number of objects. Then, we will
identify the contours that have damaged solar panel and report
their damage level, damage location, and brand information.

3 SOLARDIAGNOSTICS DESIGN
Figure 1 shows the SolarDiagnostics’s pipeline of the above opera-
tions. In addition to solar PV arrays, many other “outliers” objects
such as ridge, structure, chimney, shade, and window may also
present on solar PV array rooftops.
Segmenting Rooftop Images. SolarDiagnostics leverages an
unsupervised multi-dimensional k-Means algorithm of our So-
larFinder [4] to automatically segments rooftop images to solar
PV array image contours and other rooftop object contours.
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Model MCC

Re-trained Approaches

CNNs 1
SVMs-RBF 0.803

Random Forest 0.807
Decision Tree 0.772

KNN 0.870

Pre-trained Approaches

CNNs 0.947
SVMs-RBF -0.744

Random Forest -0.749
Decision Tree -0.574

KNN -0.695

Table 1: The detection accuracy comparison of SolarDiagnos-
tics when employing di�erent classi�ers.

Preprocessing Solar PV Array Images. Although only focus-
ing on solar residing image contours, SolarDiagnostics may still
see “outliers” in their image contours. SolarDiagnostics leverages
K-Means clustering approach to �lter out those white rectangle
contours to further removing those True Negative “outliers”.
Detecting Damaged Solar Arrays. Next, we build a new Convo-
lutional Neural Networks (CNNs)-based deep learning classi�er
that can accurately identify damaged solar cells/regions in each
solar residing image contour. The CNNs architecture is comprised
of input, convolutional layers (ReLU), max pooling, fully-connected
layers (ReLU) and output.
Pro�lingDamaged SolarArrays. To classify the damage level for
each damaged solar PV array, we leverage the supervised machine
learning approach—SVMs with linear kernel. To localize damaged
“portion” on solar PV arrays, we track the longitude and latitude for
each image contour’s vertex. SolarDiagnostics uses pixel grayscale
distribution feature to identify manufacture brand for each array.

4 IMPLEMENTATION
We implement SolarDiagnostics in python using Pandas, OpenCV,
Scikit-learn and PyCUDA. SolarDiagnostics leverages Google Image
API. In addition, we also build a SolarDiagnostics prototype. Our
prototype uses down facing camera on the drone (⇠$35) to capture
images when �ying over rooftop solar PV arrays. The images are
synchronized viaWi-Fi to Pi-3 based local SolarDiagnostics system.

5 EXPERIMENTAL EVALUATION
5.1 Datasets and Evaluating Metrics
Dataset 1. We use the damaged solar PV array image dataset com-
prised of ⇠60,000 rooftop solar PV array images with the resolution
as 1024x1024. We also include damage level, damage location, brand
information, and other installation details for each rooftop image.
Dataset 2. We also use our drone-based SolarDiagnostics prototype
to test the performance of SolarDiagnostics at 10 “mock” rooftops.
The dataset has 10 “mock” residential rooftop images.
Matthews Correlation Coe�cient (MCC). To quantify the ac-
curacy of di�erent solar PV array damage(s) detection approaches,
we use the Matthews Correlation Coe�cient (MCC) [1]. The ex-
pression for computing MCC is below,

)% ⇤)# � �% ⇤ �#p
()% + �%) ()% + �# ) ()# + �%) ()# + �# )

(1)

5.2 Experimental Results
Re-trained VS Pre-trained Approaches. All re-trained ap-
proaches can access to damaged solar PV array images from their
testing sites. For CNNs approaches, we �ne-tune the VGGnet us-
ing the information from the testing sites. In doing so, we are
bench-marking the best performance of di�erent approaches. All
pre-trained approaches do not access to damaged solar PV array
images from their testing sites. For CNNs approaches, we do not
�ne-tune the VGGnet using testing sites’ data. In doing so, we are
bench-marking the practical performance of di�erent approaches.

Table 1 shows that the MCC reported by the pre-trained So-
larDiagnostics is signi�cantly better than that of the re-trained
machine learning (ML) approaches, including SVMs-RBF, Random
Forest, Decision Tree, and KNN. In addition, the pre-trained So-
larDiagnostics (CNNs) approach yields the MCC (⇠0.95) which is
slight worse than that (⇠1.0) of the re-trained SolarDiagnostics
(CNNs). This is mainly due to the fact that the pre-trained CNNs
approach can not leverage any information from testing images to
�ne-tune its neural network. Among all the pre-trained approaches,
pre-trained CNNs approach has minimum FN as only 5.8%.
Results: Comparing with both of the re-trained and pre-trained
approaches, SolarDiagnostics is the best and stable pre-trained per-
forming approach and it yields the best MCC as 0.95, which is almost
the same as re-trained SolarDiagnostics approach.

6 CONCLUSION AND FUTUREWORK
We design a new defense system—SolarDiagnostics that can auto-
matically detect and localize damage on rooftop solar PV arrays
using only their rooftop images. Our evaluation shows that So-
larDiagnostics is able to yield an MCC as of 1.0 when detecting
damage on solar PV arrays. We plan to learn the performance accu-
racy of SolarDiagnostics using di�erent type of images (e.g., Tesla
roof shingles). Acknowledgements. Partially supported by Cyber
Florida Collaborative Seed Program.
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