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Abstract—Smart cameras have been increasingly deployed in
smart homes for remote monitoring and enhancing home security.
However, extensive recent research has uncovered potential user
privacy threats associated with popular commercial camera
systems. Some manufacture design of these commercial camera
systems usually requires smart camera users to relinquish their
control of camera recorded data. For instance, these cameras
often upload camera recordings to their cloud servers to enable
advanced data analysis for camera app services. To facilitate
enhanced camera services, the data may be further shared
with on-path vendors, third parties of manufacturers, and cloud
providers, potentially allowing them to access video footage or
image captures without users’ awareness or meaningful consent.

To address this problem, we design a new smart camera
system—PACAS that enables people to regain the control of their
data while still retaining access to regular camera services. We
evaluate PACAS using multiple camera video footage traces and
on multiple real-world camera prototypes. We show that PACAS
can achieve the performance of 0.5 second living streaming
latency at a frame rate of 30 fps and a resolution of 240x320 on
average. PACAS offers compelling evidence that smart camera
systems can deliver on-device modern capabilities comparable
to those provided by current commercial systems, all while
upholding user privacy.

Index Terms—Internet of Things, User Privacy, Tiny ML

I. INTRODUCTION

The global number of smart cameras was forecast to contin-
uously increase between 2023 and 2027 by in total 81.84 mil-
lion household [6]. In particular, North America smart home
security cameras market size was valued at USD 2.99 billion
in 2022 and is expected to grow at a compound annual growth
rate of 19.8% from 2023 to 2030 [16]. Commercial cameras
that are quite successful, since they often offer several essential
monitoring benefits, e.g., live feeding, video recording and
motion detection.

Unfortunately, extensive recent research [4] has shown that
commercially available smart cameras often follow a threat
model that mandates undue trust by design. Manufactures
or their service providers are granted unlimited access by
default to their camera recorded contents of any user who
has deployed their smart camera systems [4]. In addition,
Amazon’s Ring unit has repeatedly handed over its users’
doorbell camera footage to law enforcement without their
consent, according to new findings from an ongoing inves-
tigation [1] led by Massachusetts Senator Ed Markey, D-
Mass. Google’s current smart home division—Nest Labs has
been told to hand over data on 300 separate occasions since
2015 based on a little-documented transparency report from
Nest [10]. These commercial smart camera systems could

become massive surveillance systems. Smart camera system
users are loosing control over their own camera recorded video
and image data, and this is compromising their user privacy.

Most recent research [3], [4], [7], [11], [20], [22], [23],
[25] focus on designing customized or dedicated hardware or
software to enable image or video frame encryption to protect
smart camera systems. Unfortunately, these prior approaches
either require additional hardware support or do not adequately
address the right of sole ownership (replying on other parities),
which is crucial for practical deployment. Furthermore, they
often lack practical system performance benchmarking and
evaluation mechanisms to assess the effectiveness of protection
methods across various hardware level camera devices.

To address these issues, we design a fully-local, privacy
preserving, embedded smart camera system—PACAS that
enables users to significantly prevent privacy leakage through
their camera recorded data. Our insight is that the best privacy
preserving approach is to keep the data as close as possible
to its source, which in our case, on the camera itself. To
avoid the uncontrolled data sharing with other parties, we
harness AI at the edge and Tiny ML approaches to cre-
ate a fully-local, user privacy-preserving embedded camera
system. This system could deliver the same functionality as
commonly found in commercially available smart cameras
while safeguarding privacy by retaining data locally. PACAS
does not assume any additional hardware support and provides
a full stack evaluation towards real world deployments. In
essence, we first profile the capabilities of different embedded
devices through Raspberry Pi simulation, by limiting the CPU
frequency and available memory. We then conduct the camera
service (re)training and prediction approaches. Subsequently,
we design tiny intelligent camera services that provide com-
parable features found in commercially available cameras. By
leveraging Convolutional Neural Networks (CNNs) model,
PACAS can utilize the hardware resource of multiple levels
of embedded device, to provide a fully-local security camera
service. By doing so, we make the following contributions.
Challenges. We first explore and emphasize the key challenges
in designing our fully-local, privacy preserving, embedded
smart camera system—PACAS.
PACAS Design. We present the design of PACAS, which en-
able users to regain the control of their smart camera systems
and significantly reduce their privacy leakage through their
camera recorded data. To achieve a fully-local security camera
service, PACAS first profiles embedded devices in different
levels of performance by limiting the CPU frequency and
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Fig. 1. The data pipeline of a typical smart camera system.

available memory though Raspberry Pi simulation. PACAS
then harnesses this profiling information to construct the cam-
era service (re)training and prediction system services. Subse-
quently, we design tiny intelligent camera services that offer
the same features found in commercially available cameras.
Lastly, PACAS provides a comprehensive full-stack evaluation.
Implementation and Evaluation. We implement PACAS us-
ing the most widely used programming language—Python for
tiny machine learning models, micro controllers, and firmware.
To assess and benchmark PACAS, we conduct evaluations with
two real cameras, including the Arducam 5MP Camera and
the OpenMV Cam H7 Smart Camera. Additionally, we use
multiple camera prototypes created using Raspberry Pi Zero
2 W, Pi 2 Model B, Pi 3 Model B+, and Pi 4 Model B to
simulate various hardware levels of camera systems. We find
that PACAS excels in effectively and collaboratively managing
local devices within the monitored environment. It successfully
prevents the leakage of sensitive user information with nearly
negligible system overhead increase.
Releasing Data and Source Code. Our new approaches to
prevent user privacy leakage from smart camera systems is
quite general, and could be applied to address similar user
privacy issues in other domains. We will release the source
code and datasets of PACAS to broad user privacy and IoT
research communities on our lab GitHub website.

II. BACKGROUND AND RELATED WORK

A. Privacy Threat Model

Figure 1 shows the typical data streaming pipeline of a
commercial camera system. The camera monitors and records
local video and image data once the camera monitoring mode
is enabled (a.k.a. armed) by users. The data is transmitted from
the camera to its remote cloud servers where the manufactures
host their machine learning-based and computer vision-based
applications (e.g., motion detection, package delivery notifi-
cation). Once the cloud servers process the uploaded data,
service notifications and other results will be sent back to users
via smart phone camera apps. Our research problem here is to
design a new secure camera system that could not only provide
the regular features and functionalities but also preserve user
privacy. Our new camera system will help people regain the
control over their private information which could be inferred
from their camera data.

As shown in Figure 2, we are broadly concerned with
the ability of external adversaries (e.g., Internet service

Fig. 2. Overview of our privacy threat model.

provider, on-path network observers, manufactures, cloud stor-
age providers, and their third parties) to infer user private
information from camera recorded data. The camera recorded
data, including video frames and image frames. And these
potential adversaries may be incentives to infer user private
information from the camera reported environment where
users do not want to share this privacy-sensitive information
with them. We only trust the devices owned by the users to
run our secure camera system.

We assume external adversaries can use any sophisticated
user information inference techniques, such as machine learn-
ing, deep learning, or other statistical methods to infer certain
types of the observed user private information for the recorded
video and image data. Thus, inferring or discovering user
activities through their camera recorded data is considered as
an opposition to users’ privacy preferences.

In particular, we are concerned with four types of user
privacy inference attacks: i) Learning user occupancy from
the data. This includes whether a home or space is occupied
and when; ii) Counting occupants from the data. This includes
how many occupants are staying in the monitored space and
also how many visitors in a day, week or month; iii) Learning
occupant daily routine from the data. These user activities
are inferred from image or video frames and may include
when users come and go, when they perform their daily
activities, such as going to work, going out for groceries,
walking with their pets, playing in backyard; iv) Re-identifying
occupants from the data. Given the significant improvements
on computer vision models, it is often trivial for attackers
to learn and apply face recognition models to identify an
occupant’s face from large amount of uploaded image or video
frames. The attackers could potentially link this information to
users’ public social network accounts, leading to even more
severe privacy breaches. To exacerbate the situation further,
much of the recorded camera data already contains geotags.
Considering the wealth of personal information involved, this
privacy breach can lead to significant identity theft risks. In
addition to the above-mentioned short-term user activities,
adversaries may also infer more comprehensive and longer-
term user activities, such as whether a household has a baby,
and whether they go on vacation on weekends.

B. Related Work

While there is relatively less focus on privacy-preserving
camera systems, there is a substantial body of work dedicated
to enhancing the security of smart camera systems. We next
examine the gaps in prior smart camera security work [3],
[7], [11], [20], [22], [23], [25] and privacy enhancing cam-
era system [4]. The security enhancement approaches often
leverage encryption, sign, and customized hardware to encrypt
or blurring security sensitive areas of image or video frames.
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TABLE I
COMPARISON OF RECENT SMART CAMERA SYSTEMS

Additional
Hardware

Right of
Ownership

Single
Host

Practical
Evaluation

PrivacyCam [7] ✓ × ✓ ✓
TrustCAM [23] ✓ × ✓ ×
SoC [11] ✓ × ✓ ✓
Signcryption [20] × × ✓ ×
Pinto [25] × × ✓ ✓
CaCTUs [4] ✓ ✓ ✓ ×
TrustEYE.M4 [22] ✓ ✓ ✓ ✓
SecureCam [3] ✓ × ✓ ×

We classify them into different categories, including hardware,
software, and hybrid approaches.
Hardware-based Approaches. Ihtesham and Bernhard in [11]
presented SoC-based camera platform that integrates data and
node security into the hardware. It requires a trusted authority
for device fingerprinting in key generation and trusts the
manufacturer’s physically unclonable functions for encryption
keys. Changing ownership might necessitate buying a new
device. Thomas and Bernhard in TrustCAM [23], features
a hardware security module with an Atmel TPM chip for
enhanced security, though it does not encrypt video frames
and assumes users have the necessary hardware.
Software-based Approaches. Hyunwoo and Jaemin proposed
Pinto [25], which is a software solution for producing privacy-
protected, forgery-proof videos on low-end IoT cameras. It
allows privacy filtering in post-processing while maintaining
real-time video authenticity. However, it might leave other
identifiable information unobscured. EYE.MP4 [22] by Win-
kler and Rinner, and signencryption [20] by Ullah et al.
provide secrecy and integrity for video frames, but issues like
video deletion and delegation are not fully explored.
Hybrid Approaches. Ankur and T.E.’s PrivacyCam [7] imple-
mented PICO to secure real-time video feeds on Blackfin DSP,
enabling surveillance while maintaining privacy. Yet, it doesn’t
fully safeguard privacy in smart cameras and leaves some
vulnerabilities. CaCTUs [4] offers commercial-grade smart
camera features, utilizing direct pairing and cryptographic
algorithms for data management, but relies on smartphones
for encryption settings and doesn’t fully consider commercial
hardware limitations. Ifeoluwapo et al.’s approach [3] focuses
on selective encryption for surveillance videos, but also de-
pends on a host machine for encryption tasks.
Observation. As shown in Table I, hardware-based or hy-
brid solutions, such as PrivacyCam [7], TrustCAM [23],
SoC [11], Signcryption [20], CaCTUs [4], TrustEYE.M4 [22],
and SecureCam [3], often could support stronger encryption
or blurring algorithms. Hardware-based approaches (i.e., Pri-
vacyCam [7], SoC [11]) typically were validated in real appli-
cations due to their necessary hardware design and overhead
benchmarking. Hybrid approaches (e.g., TrustEYE.M4 [22],
CaCTUs [4]) can support right of the ownership on smart
cameras, which assumes only the owner is trusted. Software
solutions (e.g., Signcryption [20], Pinto [25]) typically does
not support right of ownership. Almost all the related work

assume their new solutions are deployed or hosted by a single
hardware, either a camera itself or a hosting machine.

Prior research has advanced the security of smart cameras
but often falls short in privacy preservation for real-world
use due to several limitations: reliance on single-host setups
that may struggle with resource constraints, inadequate sup-
port for ownership rights, dependence on centralized systems
or authorities for protection, additional hardware needs for
software-based methods, misplaced trust in manufacturers, and
outdated privacy threat models. Moreover, there is a lack
of performance evaluations for these methods across varying
hardware, an oversight our PACAS project aims to address.

III. CHALLENGES

In this section, we outlined the key challenges we met when
designing, implementing, and evaluating our PACAS.
Limited Computing Resources. The smart cameras and other
devices in the monitored environment may present limited
computing resources, including CPU, RAM, ROM, network
bandwidth and I/O speed, etc. These resource limited cameras
and other IoT devices may not be able to (re)train and predict
camera services using standard machine learning or deep
learning models. In particular, these devices themselves may
not have sufficient memory and storage space to store the
camera recorded video and image data for modeling retraining
which is the foundations for many camera features. To address
this issue, we leverages tiny machine learning models to build
adaptive distributed machine learning enabled smart camera
services. In addition, we also develop a new camera data
relocation approach to mitigate the limited storage issue.
No Advanced Development Library Support. Unlike tra-
ditional system development support, such as ready-to-use
machine learning or deep learning frameworks or libraries,
smart camera systems often do not have any off-shelf toolkit
to run their firmware immediately. To address this issue, we
develop or tailor a set of tiny machine learning and deep
learning models from scratch. We use these lightweight models
to develop intelligent camera services that offer the same
features found in commercially available cameras.
No Special Hardware Support. Many prior work assumed
specially designed or tailored camera hardware to support their
functionaries to protect user sensitive data leakage. Unfortu-
nately, this is not the case in real practice. In a real monitoring
environment, people often may not be willing to purchase or
install additional dedicated device to help mask their privacy
in camera data streams. To address this issue, we design a new
adaptive distributed system to provide user privacy preserving
services. Our system will automatically profile the local IoT
environment and determine procedures for distributed model
(re)training and data relocation using all the available devices.
Non Practical Trust Models. As we discussed in Section II-B,
many recent works assumed the trust relationship among
different parities who might be potential on-path attackers for
smart camera systems. Several recent approaches still assumed
they can trust on camera manufacturers to mask their privacy.
Regrettably, this trust model seems unviable, especially in
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Fig. 3. The operational pipeline of PACAS.

light of recent concerns regarding data resharing without user
consent. To address this issue, we only assume the trust on
users’ local devices to build our new system—PACAS. Our
insight for PACAS is that the most effective privacy-preserving
approach should operate where the data is generated.

IV. DESIGN

In this section, we will explain how we design our security
camera system—PACAS.

A. System Design

We design a new fully-local, privacy-aware, embedded secu-
rity camera system—PACAS that enables users to significantly
prevent privacy leakage through their camera recorded data.
Our insight is that instead of uploading data to the cloud, we
can harness AI@Edge and Tiny ML techniques to create a
local camera system that offers the same functionalities as
those commonly found in commercially available cameras.
This approach ensures privacy by keeping data locally secured.
System Operational Pipeline. Figure 3 shows the system
pipeline of PACAS. In essence, PACAS first profile the em-
bedded device capability by simulating with different CPU
frequency and available memory on a Raspberry Pi, to deter-
mine the amount of training data allocated to the camera with
acceptable training latency and model accuracy. PACAS then
constructs new camera service (re)training and prediction sys-
tem services. Subsequently, we design tiny intelligent camera
services that offer the same features found in commercially
available cameras. Lastly, PACAS incorporates a comprehen-
sive full-stack evaluation.

B. Profiling Heterogeneous Hardware Devices

PACAS relies on a heterogeneous hardware device profiling
information for workload dispatching and data relocation,
which are crucial to enable smart camera services. To build this
model, we first leverage multiple hardware devices, including
Raspberry Pi Zero 2 W, Pi 2 Model B, Pi 3 Model B+, and Pi 4
Model B, to build camera prototypes to simulate various levels
(∼1,597) of camera systems. We then empirically review and
identified six principal features, including SDRAM frequency,
the number of CPU cores, CPU frequency, and memory allo-
cation and I/O speed, which could comprehensively describe
each hardware’s computing capabilities. By doing so, we cre-
ate a set of different hardware profiles, which are representing
different level cameras and other in-field devices. Figure 5
(a) illustrated the relationship between training time and CPU
frequency of PACAS. We observe that the model training time
exhibits a non-linear increase as the CPU frequency is reduced.
We find that all of the 5 models on a standard 1,800 MHz
CPU camera require less than ∼100 seconds for training. This
suggests acceptability in the real-life scenario of training a
single camera.

Data Cleaning and Preprocessing. The principal features
identified in prior step may be recorded using different mea-
surement units. We could not simply compare and compute
the correlations among them to build our model directly. The
goal of this data preprocessing is to change raw feature vectors
into a representation that is more suitable for the downstream
estimators. Standardization of datasets is a common require-
ment for camera service related machine learning estimators.
Given a learning objective, people assumes all features are
centered around zero or have variance in the same order. If
a feature has a variance that is orders of magnitude larger
than others, it might dominate the objective function and make
the estimator unable to learn from other features correctly as
expected. To address this issue, we leverage standard scaling,
min-max scaling, and Box-Cox transformation to preprocess
our training dataset to train our models.
Unsupervised Device Capability Learning. After collecting
and preprocessing data with the features from IoT devices, we
leverage KMeans [12], DBSCAN [19], OPTICS [2], among
others to categorize the hardware configurations. To goal of
this unsupervised clustering is to identify how many cate-
gories we should have to efficiently characterize the hard-
ware devices, in particular for the cameras. The K-Means
algorithm [12] clusters data by trying to separate camera
data samples in n groups of equal variance, minimizing a
criterion known as the inertia or within-cluster sum-of-squares.
Affinity Propagation [9] creates clusters by sending messages
between pairs of samples until convergence. A dataset is
then described using a small number of exemplars, which are
identified as those most representative of other samples. We
also study the comparison results when we applying different
clustering methods over our hardware specification dataset.
Initially, as shown in Figure 4 (a)∼(d), we employ a Gaussian
mixture model to determine the appropriate cluster size for
our camera prototype dataset. Our benchmarking results using
commercially available camera specs indicate a cluster size
of three is achieving the best performance. Then, we run
Gaussian mixture model again across four different hardware
enabled camera prototypes. The goal is to ensure our identified
cluster size performs well on different camera prototypes. The
last step in this unsupervised learning process is to identify the
best performing clustering approach. We find that K-Means is
the best performing unsupervised approach for our prototype
dataset.

C. Adaptive Camera Service Training

To further reduce the time consumption on training a image
identification model, we consider a smart dispatcher which
dispatches partial training dataset to the embedded device, ac-
cording to their performance level, to achieve an adaptive train-
ing process. Figure 5 (a) illustrated the relationship between
training time and CPU frequency of PACAS in standalone
mode. Not surprisingly, we observe that while maintaining
MCC within the range of 0.9-1.0, the model training time
exhibits a non-linear increase as the CPU frequency is reduced.
We find that all of the 5 models on a standard 1,800 MHz
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(a) (b) (c) (d)
Fig. 4. The comparison results when using different machine learning models.
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CPU camera require less than ∼100 seconds for training. This
suggests acceptability in the real-life scenario of training a
single camera.
Minimum Amount of Data for Training and Predicting.
The question towards real world deployment for a smart
camera system is minimum amount of data that is required to
train a reasonably accurate model (i.e., when MCC ≥ 0.9).
To fundamentally understand this problem, we benchmark
the distributed learning process by varying the size of data
relocated to each participating device. As shown in Figure 5
(b), our results show that after each device receive at least 13%
of the dataset, the model accuracy become stable on both big
datasets—MNIST [15] and CIFAR-10 [8]. That being said,
13% of the dataset is ideally the minimum amount of data
to ensure our training or other service prediction. The time
consumption for training a machine learning or deep learning
model is positively correlated to the size of the given dataset.
This learned cutoff will also help us find out the optimal trade-
off point between training speed and model accuracy for most
widely used smart camera applications. We will apply this
constrain when we schedule workload and data relocation.

D. Enabling Tiny Smart Camera Services

Next, we develop a set of smart camera services including
objection detection and motion detection, which are the key
foundations to enable a wide set of smart camera features.
Unfortunately, as we discussed in Section III, the standard
machine learning or deep learning library or framework can
not be used directly to address our problem. Instead, we tailor

Fig. 6. The overview of our CNNs architecture design.

the “large” models into tiny models so that they can run on
tiny devices, e.g., cameras, IoT hubs, etc. Next, we tailored
a new CNN-based deep learning classifier that can accurately
detect objects and motions in camera recorded videos. Be-
low, we describe the design of our CNNs architecture. As
shown in Figure 6, our CNNs architecture is comprised of
input, convolutional layers (ReLU), batch normalization layer,
max pooling, dropout layer, fully-connected layers(ReLU) and
output layer (softmax). The inputs are 32x32x32 video frames,
and the first two layers are convolutional layers which have
32x32x32 neurons with a rectified linear unit (ReLU). Then,
we have another two convolutional layers that have 16x16x65
neurons with ReLUs. After these layers, we employ another
convolutional layer with ReLUs, and all these layers have
8x8x64 neurons. Finally, we leverage 2 convolutional layers
with ReLUs, and these layers all have 1x1x128 neurons.
Among the different groups of convolutional layers, we have
2x2 max pooling which is used to down sample input video
frames and reduce their dimensionality. Note that, the way
we build this model is quite general, so our model potentially
can also be adapted into similar application domains, such as
embedded navigation and medical IoT devices.

E. Full Stack Benchmarking and Optimization

Different than prior work, PACAS also provides a full
stack benchmarking on system performance using Matthews
Correlation Coefficient (MCC) [14] and Adversary Confi-
dence (AC) [26], and privacy preserving guarantee evaluation.
PACAS could examine smart camera systems in terms of their
CPU utilization, Memory, ROM, Network Bandwidth and I/O
once they are in armed mode. PACAS also could preload
the common hardware configurations that we found in the
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(a) Face Detection (b) Object Detection (c) Live Stream (d) Event Recording

Fig. 7. PACAS’s live demonstration of features and functionalities.

commercially available cameras and IoT devices. That being
said, PACAS can provide practical evaluations towards real
world deployments. In addition, we developed optimization
approaches to further enhance PACAS’s system performance.
Runtime Data Relocation Adjustment. For instance, PACAS
supports runtime improvements on the data relocation method
that we use in our second step—adaptive distributed model-
ing process. PACAS monitors the local model performance
on each device and alerts the coordinator to optimize data
distribution across different devices.
Dataset Shuffling. Unlike image identification models trained
on image datasets, object detection models, which usually im-
plemented on detecting moving human, pets, or vehicles, will
be trained based on video footage, i.e, image sets with high
time-correlation. Regular dataset shuffling may break such
time-correlationship, and may bring significant performance
loss especially for some machine learning models with high
time-dependency, like Long Short-Term Memory (LSTM).

V. IMPLEMENTATION

We implement PACAS on real cameras—Arducam 5MP
Camera and OpenMV Cam H7 Smart Camera. Additionally,
we use multiple camera prototypes created using Raspberry
Pi Zero 2 W, Pi 2 Model B, Pi 3 Model B+, and Pi 4 Model
B, using Python and C to simulate different level hardware
specifications found in commercially available camera sys-
tems. We implement the system components using widely
available open-source frameworks, including OpenCV [5],
Scikit-learn [17], TensorFlow Lite [21], and YOLO [24].

To implement heterogeneous hardware characterizing
model, we develop a TensorFlow Lite-based pose estimation
application using four datasets. We also use Crontab jobs
and shell scripts to automate this data collection process
across different hardware prototypes. We leverage standard
scaling, min-max scaling, and Box-Cox transformation to
preprocess our datasets. We then use Scikit-learn library to
implement unsupervised learning, including K-Means, DB-
SCAN, OPTICS, among others. We implement Linear Regres-
sion, SVR, Random Forest, KNN, Ridge, Lasso, and neural
network based models to understand and classify different
hardware levels in terms of computing resources to provide
smart camera services. To build optimal ensemble model,
we implement several model reconstruction and ensemble
methods, including Voting, Stacking, Bagging, to collect and

reconstruct a “global” model. For extended evaluation, we also
use Amazon EC2 [13] t1.micro instance with a cost of $0.0035
per hour to perform computing offload to cloud experiments.

VI. EXPERIMENTAL EVALUATION

A. Datasets

Dataset 1: MNIST Dataset. We downloaded the MNIST
dataset [15], which has a training set of 60,000 image samples,
and a test set of 10,000 image samples. MNIST is commonly
used for training various image processing systems. The
dataset is also widely used for training and testing in the field
of machine learning-based applications.
Dataset 2: CIFAR-10 Dataset. We downloaded the CIFAR-
10 dataset [8] that is an established computer-vision dataset
used for object recognition. The CIFAR-10 dataset consists
of 60,000 32x32 colour images in 10 classes, with 6,000
images per class. There are 50,000 training images and 10,000
test images. The dataset is divided into five training batches
and one test batch, each with 10,000 images. The test batch
contains 1,000 randomly-selected images from each class.

B. Experimental Setup

PACAS on Camera #1. We implemented and deployed
PACAS on the real camera—Open MV H7 Smart Camera.
This PACAS implementation covers all system components,
including profiling heterogeneous hardware devices, adaptive
camera distributed training and prediction, enabling tiny smart
camera services, full stack benchmarking and optimization.
PACAS on Camera #2. We implemented and deployed
PACAS on the real camera—Arducam 5MP Camera. This
PACAS implementation covers all system components, includ-
ing profiling heterogeneous hardware devices, adaptive camera
distributed training and prediction, enabling tiny smart camera
services, full stack benchmarking and optimization.

C. Evaluation Metrics

Matthews Correlation Coefficient (MCC). We note that
standard evaluating metrics (e.g, accuracy, F1) would not work
well on highly imbalanced training data [18]. We use the
MCC [14], a standard measure of a classifier’s performance,
where values are in the range −1.0 to 1.0, with 1.0 being
perfect object detection, 0.0 being random object inference,
and −1.0 indicating object inference is always wrong. The
expression for computing MCC is below, where TP is the
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fraction of true positives, FP is the fraction of false positives,
TN is the fraction of true negatives, and FN is the fraction of
false negatives.

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(1)

D. Experimental System Performance Evaluation Results

1) PACAS’s Features: As a fully-local, privacy preserving
embedded camera system, PACAS is designed to offer com-
parable capabilities provided by current commercial camera
systems, that includes live streaming, event recording triggered
by human detection, and object detection for monitoring parcel
deliveries. Figure 7 shows the capabilities of PACAS.

2) Quantifying PACAS’s Privacy-preserving Performance in
Standalone Mode: Figure 5 (a) illustrated the relationship
between training time and CPU frequency of PACAS in
standalone mode. Not surprisingly, we observe that while
maintaining MCC within the range of 0.9∼1.0, the model
training time exhibits a non-linear increase as the CPU fre-
quency is reduced. We find that all of the 5 models on a
standard 1,800 MHz CPU camera require less than ∼100
seconds for training. This suggests acceptability in the real-
life scenario of training a single camera. Note that the result
was collected when using 100% of MNIST dataset, and it’s
far beyond sufficient ∼13% according to the result in Figure 5
(b).

3) Quantifying PACAS’s System Overhead: Figure 8
demonstrates the performance of PACAS deployed on camera
and other five different IoT devices. For each cluster group, we
are reporting CPU utilization, RAM, and ROM usage on the
hosted hardware platforms. In Figure 8, we demonstrated three
clustered groups, including (re)training, camera servicing, and
system idling. Our results show that PACAS on three, four,
and five devices in collaborative mode and standalone mode
has only a minimal or marginal increase on CPU and RAM
utilization, when the smart camera system is armed. That
says, PACAS has demonstrated the performance consistency
in the ability of protecting user private information across
five different devices and one real home camera deployment.

TABLE II
THE PERFORMANCE COMPARISON OF OUR SMART CAMERA SYSTEM

MCC 0.9343

Latency (s) Modeling 692
Servicing 1.4

Note that, although all the devices are having higher system
overhead in the training process than idling mode, it is
significant to note that this (re)training process is optional
for real-world deployment and up to user personal preference.
Many commercially available cameras are only working in
pre-trained modeling mode. In addition, we find that ROM
utilization remains the same across different devices, which
indicates near-zero ROM overhead increasing.
Results: PACAS almost yields the same ROM overhead across
five different devices. PACAS shows the performance consis-
tency in protecting user privacy on five IoT devices and one
real camera deployment in both collaborative and standalone
modes, with only a minimal or marginal increase on system
overhead in terms of CPU and RAM utilization.

4) Quantifying PACAS’s System Latency: We next focus
on examining PACAS’s system latency on both modeling
and servicing. Table II presents the performance comparison
results using model accuracy and training and predicting time,
with 30% of the shuffled CIFAR-10 dataset for training. Our
results indicate that when dispatching partial training dataset
to the smart camera, the overall MCC is still close to 1, with a
servicing latency lower than 2 seconds. Though the modeling
latency, i.e. time consumption for re-training the model reaches
11.5 minutes, the whole re-training process is optional and the
user can select to use our pre-trained model directly.
Results: PACAS consistently performs well, even when mi-
grated from a camera (standalone mode) to multiple local
devices (collaborative mode). Furthermore, during these mi-
grations, the service latency of PACAS increases, while the
overall training time of PACAS’s models decreases.

5) Examining the quality of PACAS’s System Services:
Next, we quantify the service quality of PACAS when varying
the data relocation size for each participating device. Figure 9
illustrates the performance comparison results. We find that
after ∼20% of data relocation, the local models on most
participating devices has yielded the MCC as of ∼0.95, which
is much closer to 1. After 50% relocation, almost all the
devices are achieving their top accuracy. That being said,
∼20% of data relocation is the minimum cut to build a
reasonably accurate sub-network model. And this pattern can
be consistently observed across four different devices.
Results: PACAS consistently achieves an MCC accuracy of
0.95 even after relocating approximately ∼20% of the data
across four different participating devices. This demonstrates
that PACAS can attain high accuracy quickly with only a small
portion of the dataset being relocated to the device.

VII. CONCLUSION AND FUTURE WORK

We present a new on device, privacy-preserving smart cam-
era system—PACAS, which enable users to re-gain the control
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Fig. 9. The comparison of PACAS system when applying different training dataset sizes.

of their smart camera systems and significantly reduce their
privacy leakage through their camera recorded data. PACAS
first profiles the performance level of multiple embedded
device, to determine the adaptive model training distribution.
PACAS then harness this profiling information to construct
new adaptive, distributed camera service (re)training and pre-
diction system services. Then, we develop tiny intelligent
camera services that offer the same features found in com-
mercially available cameras. Eventually, PACAS incorporates
a comprehensive full-stack evaluation. We evaluate PACAS
using real cameras, and also multiple camera prototypes. We
find that PACAS successfully prevents the leakage of sensi-
tive user information with nearly negligible system overhead
increase. PACAS offers an evidence that smart camera systems
can deliver advanced capabilities, similar to those provided by
current commercial systems, all while upholding user privacy.

We plan to implement PACAS in a distributed manner, as
well as adding more features for PACAS. We will also collect
more data to further evaluate the performance of PACAS. In
particular, we will continue to optimize our data relocation
approach in runtime. We will also design new data encryption
approaches to defend local adversaries.
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