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Abstract—The Internet of Things (IoT) devices have been
increasingly deployed in smart homes for automation. Unfor-
tunately, extensive recent research shows that external on-path
adversaries can infer and fingerprint user sensitive in-home ac-
tivities by analyzing IoT network traffic rates alone. Most recent
traffic padding-based defending approaches cannot sufficiently
protect user privacy with reasonable traffic overhead. In addition,
these approaches typically assume the installation of additional
hub hardware in smart homes to host their traffic padding-based
defending approaches. To address these problems, we design a
new open-source traffic reshaping system—privacy as a router
operating system service (PAROS) that enables smart home users
to significantly reduce private information leaked through IoT
network traffic rates. PAROS does not assume the installation of
any additional hardware device. We evaluate PAROS on open-
source router Operating System (OS)—OpenWrt enabled virtual
machine and also two real best-selling home routers. We find
that PAROS can effectively prevent a wide range of state-of-
the-art adversarial machine learning-based user in-home activity
inference attacks, with near-zero system overhead increasing.

Index Terms—Internet of Things, User Privacy, Machine
Learning, Router OS, Data Analytics

I. INTRODUCTION

People are increasingly deploying the Internet of Things
(IoT) devices for their smart home automation. The total
installed base of IoT devices is projected to 30.9 billions
worldwide by 2025, a sharp jump from 13.8 billion units in
2021 [32]. Traffic data generated by IoT devices is recorded
by Internet Service Providers (ISPs) to maintain customer
services, such as generating monthly bills, personalizing data
plan, and detecting network outages. Verizon uses “supercook-
ies” to track user activity, and AT&T charges customers an
extra $29 per month to avoid “the collection and monetization
of their browsing history for targeted ads,” Mozilla told
Congress [20]. ISPs like AT&T, Comcast, Sprint, and Verizon
are selling personal traffic data without prior user consent to
“enhance” user experience [8]. Moreover, recent IoT privacy
survey [17] shows that 72 out of 81 popular IoT devices
are sharing data with third-parities (e.g., Google, Amazon,
Akamai) completely unrelated to original manufacturer and
far beyond basic necessary device configuration, including
voice speakers, smart TVs, and streaming dongles. Meanwhile,
significant recent research [6], [7], [9], [10], [12], [13], [15],
[23], [30], [36], [37] shows that launching user activities
inference attacks is surprisingly easy, since user activities
highly correlate with simple time-series data statistical met-

rics. Thus, IoT device traffic rates alone have significant
user privacy threats. To address this privacy issue, significant
recent work [6], [9], [11], [21], [34]–[36], [38] proposes
traffic reshaping-based prevention techniques to thwart privacy
attacks on IoT traffic rates. Unfortunately, these approaches
can not sufficiently protect user privacy with reasonable traffic
overhead. Specially, these approaches typically assume the
pre-installation of an additional hub hardware (e.g., Raspberry
Pi, IoT Hub) [2], [38], which is not always available in every
home, to host their traffic padding approaches.

To address these problems, we design a new open-source
traffic reshaping system—privacy as a router operating system
service (PAROS) that enables smart home users to significantly
reduce the private information leaked through IoT device net-
work traffic rates. PAROS does not assume the pre-installation
of any additional hardware in a smart home. In doing so, this
paper makes the following contributions.

Challenges. We explore and highlight the major challenges
to design efficient user privacy preserving approaches on the
resources limited home routers directly.

PAROS Design. We present the design of PAROS, which
enables users to re-gain the control on reducing their privacy
leakage through IoT network traffic. In essence, PAROS
leverages traffic rate signature learning, hidden Markov model
(HMM)-based artificial traffic signature injection, and partial
traffic padding to obfuscate user privacy. We also design a
Support Vector Machines (SVM)-based memory replacement
scheme to further optimize PAROS’s performance.

Implementation and Evaluation. We implement PAROS both
simulator and new kernel service using the most widely used
programming language—C for router operating systems and
firmwares. We evaluate and benchmark PAROS on open-
source router OS—OpenWrt enabled virtual machine and
also two real commercial router deployments. We find that
PAROS can effectively prevent a wide range of state-of-the-
art adversarial machine learning-based user activities inference
attacks, with near-zero system overhead increasing.

Releasing Datasets and Code. Our approaches to prevent
user sensitive information leakage through IoT traffic rates
are quite general, and can be applied to address similar user
privacy problems. We release the source code and datasets of
PAROS to IoT research community on our website [4].
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Fig. 1. Overview of our privacy threat model in a smart home.

II. BACKGROUND AND RELATED WORK

A. Privacy Threat Model

As shown in Figure 1, we are broadly concerned with the
ability of external adversaries (e.g., ISPs, on-path network ob-
servers, manufactures, and their third-parties) to infer user in-
home activities from smart home network traffic rate metadata.
The network traffic rate metadata, including inbound/outbound
traffic rates, network protocols, source, and destination IPs
and package sizes, are accessible to many on-path entities.
And these potential adversaries may be incentives to infer user
activities in smart homes where users do not want to share this
privacy-sensitive information with them. We assume external
adversaries can use sophisticated user information inference
techniques, such as machine learning (ML), deep learning
(DL), or other statistical methods to infer certain types of the
observed user pattern information in the recorded traffic rates.
Thus, inferring or discovering user activities in these homes
is considered as an opposition to users’ privacy preferences.

In particular, we are concerned with four types of user
privacy inference attacks: i) Learning user occupancy from the
data. This includes whether a home or building is occupied and
when; ii) Learning network traffic pattern information from
the data. This includes whether a particular IoT device (e.g.,
Voice Assistant) is present in a home, what model of an IoT
device is present, and how much traffic the home consumes
on it every month; iii) Learning user in-home activities from
the traffic data. These user activities are inferred using IoT
device activities and may include when users come and go,
when they perform their daily activities, such as going to bed,
waking up, watching TV, listening to music, playing online
games; iv) Learning user contextual information from the data.
In addition to the above-mentioned short-term user activities,
adversaries may also infer more comprehensive and longer-
term user activities, such as whether a household has a baby,
and whether they go on vacation on weekends.
Attack Scenario #1: To infer the type of IoT devices at a
certain home, an external Internet on-path adversary intends
to acquire the real-time IoT network traffic traces and leverage
ML/DL-based statistical learning and data mining approaches
to learn whether a particular IoT device (e.g., Voice Assistant)
is present in a home and what model of an IoT device is
present. Then, the external attacker may launch cyberattacks
for a specific IoT device when user daily routine permits.
Attack Scenario #2: An external adversary from ISPs, IoT
device manufacturers or their third-parties is actively monitor-
ing the IoT traffic traces to learn user activities and uses data
analytic approaches to learn indirect user privacy information
(e.g., user short-term and long-term activities) that might be
interesting for insurance companies, marketers, or government.

We also assume our smart home users trust in Amazon AWS
(EC2) or Google Cloud services to host their remote servers
to protect their user privacy information. Note that, evaluating
the effectiveness of establishing trust relationship between end
users and cloud servers is outside the scope of this paper.

B. Related Work

There is a gap in the literature concerning privacy preserving
methodologies that use ML/DL techniques and are deployed
in home routers. We outlined the design alternatives that
are most related to our work. In doing so, we review a
wide range of the most recent sophisticated traffic reshaping-
based prevention techniques [6], [7], [9], [10], [13], [14],
[23], [27], [28], [30], [36], [37] to thwart privacy attacks on
IoT traffic rates. To understand the performance of different
approaches, we implemented three different traffic reshaping
approaches. Table I quantifies the effectiveness of the seven
recent approaches. We use ε-security [23] to describe the
probability of a traffic reshaping approach can not prevent
users from external adversarial inferring attacks.
Pure Traffic Injection. Prior work [9], [18], [23] proposed
defense approaches to inject artificial network traffic patterns
to conceal genuine user network traffic patterns. Table I shows
the general implementation of these approaches yield addi-
tional overhead as ∼97%. Park et al. found that traffic traffic
encryption cannot prevent privacy invasions exploiting traffic
pattern analysis and statistical inference [23]. Park et al. de-
veloped empirical models to statistically learn user behaviors
from wireless sensors status transition data. Then, cloaking
network traffic patterns are injected to obscure genuine traffic
patterns. Cai et al. presented a defense—Tamaraw against
Tor website fingerprinting that can reshape traffic rate traces
by controlling the size of the parameter to pad packets [9].
However, these approaches did not always hide the genuine
network traffic patterns, in particular, during higher and lower
traffic rate periods. In addition, their traffic injection process
was built in a simulator which would require a device to host it
to reshape traffic rates. The computation, communication, and
storage costs are not fully evaluated towards real deployment.
Random Traffic Padding. Recent work [6], [13], [15] pro-
posed random traffic padding-based defending approaches that
could prevent an external adversary from reliably distinguish-
ing genuine user involved traffic patterns from “fake” traffic
patterns. As shown in Table I, the general implementation
yields additional overhead as ∼165.9%. Dyer et al. proposed a
buffered fixed-length obfuscator based random padding to pre-
vent website fingerprinting attacks [13]. Juarez et al. proposed
an adaptive padding approach that can provide a sufficient
level of security against website fingerprinting [15]. They
matched the gaps between traffic packets with a distribution
of generic network traffic. Similarly, Apthorpe et al. presented
a stochastic traffic padding algorithm, which can be deployed
on edge gateways, middle boxes, or IoT hubs to flatten traffic
patterns and inject fake traffic patterns that look like the
real IoT traffic patterns [6]. Due to computing and storage
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Additional
Hardware Security (ε) Additional

Overhead
Pure Injection Yes 87.15% 97%

Random Padding Yes 54.33% 165.9%
Hybrid Reshaping Yes 72.6% 103.7%

Tor [9] Yes 77.5% 25%
RepEL [7] Yes 33% 100%

Tamarow [9] Yes 3.4% 199%
PrivacyGuard [38] Yes 14.2% 66.7%

TABLE I
THE COMPARISON OF SEVEN MAJOR TRAFFIC RESHAPING APPROACHES.

cost, these approaches typically require the deployment of
additional hardware to perform their traffic padding operations.
Hybrid Traffic Reshaping. Prior work [7], [10], [14], [26]–
[28], [30], [37], [38] presented hybrid reshaping techniques
to prevent user privacy leakage . These approaches typically
combined traffic rate flattening and artificial traffic signature
injection to further obscure user privacy. Table I shows the gen-
eral implementation yields additional overhead as ∼103.7%.
Chen et al. proposed to learn the “noise” injection rate using
empirical analytics of IoT device activities [10]. Similarly,
Bovornkeeratiroj et al. proposed RepEL which employed an
edge gateway (typically, a Raspberry PI-class node) to par-
tially flatten traffic loads and randomly replay traffic loads
to hide user occupancy information [7]. Shmatikov et al.
proposed adaptive padding algorithms to destroying timing
“fingerprints” application traffic by enforcing inter-package
intervals to match pre-defined probability mass functions [30].
Wang at al. [37] designed a traffic padding algorithm that uses
matched package schedules to prevent adversaries from paring
incoming and outgoing traffic. Significant work [14], [26]–
[28] proposed to model user activities using Markov Chain
model. Keyang et al. proposed PrivacyGuard [38] assumed
the installation of an additional IoT hub to reshape both
incoming and outgoing traffic concurrently. Due to the nature
of empirical modeling and random injection, these approaches
may still allow external attackers to identify the injected
“fake” signatures, and thus infer genuine user activities. These
approaches typically assumed the installation of either a simu-
lator (on a computer) or edge gateway (typically, a Raspberry
PI-class node) to enable their defending approaches.
Observation. Table I shows that random traffic padding
approach—Tamarow yields the lowest ε-security as of 3.4%.
Unsurprisingly, pure traffic injection approach reports the
highest ε-security as of 87.15%. This is mainly due to the fact
that pure traffic injection approach only injects and adjusts
the shape of “fake” traffic patterns and does not reshape any
real IoT traffic patterns already presented in IoT traffic traces.
Hybrid traffic reshaping approach reports better ε-security
(e.g., PrivacyGuard [38], RepEL [7]). Hybrid traffic reshaping
approach also makes its best efforts to partially flatten both
genuine and “fake” traffic patterns. The different correlation
performance between hybrid traffic reshaping approach and
random traffic padding approach is that random traffic padding
approach generally has higher flattening threshold to pad IoT
traffic patterns, and also consider bidirectional traffic padding
for IoT devices (e.g., Amazon Alexa, Google Home). For

the same reason, Tamarow [9] reports the maximum traffic
overhead as of 199% additional overhead per device per day.
Although prior work has improved user privacy preserving,
many of these work assumed the installation of an addition
hardware to “host” their reshaping approaches.

C. Summary

Prior research proposes significant work to thwart privacy
attacks on IoT traffic rates. Unfortunately, these approaches
still have the following limitations towards real home de-
ployments. (1) Many existing approaches are proposed, im-
plemented and evaluated on a simulator which is potentially
installed on a host device (e.g., desktop, middle box, edge
gateway, WiFi access point). Thus, these approaches are not
(fully) evaluated in a real smart home yet. (2) The most recent
notable approaches (e.g., [6], [38]) assumed the installation of
an additional hardware—IoT Hub, which is running on a open-
source firmware or having adaptive application programming
interfaces (APIs), to enable its traffic shaping algorithms. (3)
Many recent work leveraged standard ML/DL frameworks
to build their defending approaches. Their model (re)training
process is typically heavy for standard smart home IoT hubs,
edge gateways or middle boxes. Also, full stack evaluation
(e.g., energy consumption, memory storage, CPU utilization)
towards read-world deployment is missing. Thus, new practical
approaches are necessary. These valuable insights will guide
the development of our proposed technique—PAROS.

III. CHALLENGES

In this section, we outlined the major challenges we met
when designing and evaluating our PAROS.
No Additional Device. Many prior defending approaches [13],
[15], [38] required the deployment of additional hardware
(e.g., Amazon Alexa, Google Home, Raspberry Pi), which is
running on open-source firmware or adaptive application pro-
gramming interfaces (APIs), to reshape traffic rates of a smart
home. And they also assume they could apply any changes that
are necessary to build their new approaches. Unfortunately,
this is not the case in real practice. To address this issue,
PAROS only leverage existing popular IoT or edge devices in
smart homes and does not assume any additional hardware
installation. Specially, PAROS identifies the most common
devices—home routers to host new defending approaches.
Unexpected Service Latency. The defending techniques
hosted on IoT hubs may cause IoT service delay. The most re-
cent work [38] has shown that Amazon Alexa, Google Home,
and Belkin Switch have 0.51, 0.47, and 0.76 seconds latency
on their cloud services after applying the most notable traffic
reshaping approach [38] on their IoT hub, respectively. This
service latency may disimprove smart home user experience.
To address this issue, PAROS is designed in a lightweight
manner and also leverages multiple optimization techniques to
further reduce traffic reshaping overhead. In doing so, PAROS
can significantly obfuscate private information that can be
observed in IoT traffic trace with reasonable traffic overhead.

Authorized licensed use limited to: Marquette University. Downloaded on August 21,2024 at 20:29:13 UTC from IEEE Xplore.  Restrictions apply. 



Limited Computing Resources. The most common devices
in smart homes are home routers. Different from IoT hubs or
edge gateways, the best selling home routers typically have
very limited computing resources. For instance, the Amazon
best selling home router—Netgear R6700 has a Broadcom
CPU of 1 GHz, 256 MB Random Access Memory (RAM),
and 128 MB ROM. These home routers may not be able to
(re)train and test standard/heavy ML/DL models directly. In
addition, these home routers typically do not have enough
memory space to store and manage all the IoT device traffic
rate signatures which are the foundations for existing privacy
leakage preventing approaches [6], [7], [9], [10], [12], [13],
[15], [23], [30], [36], [37]. To address this issue, PAROS
leverages a tailored lightweight ML approach and a new
memory space replacement approach to learn and replay IoT
traffic patterns to build privacy-preserving approaches.
Isolated Ecosystem. Although many IoT devices have their
programming APIs, such as Amazon Alexa and Google home,
their ecosystems tend to be isolated. In addition, we cannot
suspend back-end data collection or sharing. Uploading traffic
rates to remote servers may cause privacy preserving concerns.
To address this issue, PAROS goes beyond the IoT hubs and
work on home routers to prevent user privacy leakage.
No Advanced Development Support. Rather standard system
development support, we are not aware of ready-to-use open-
source frameworks to support router level ML/DL system
development. The most common firmware for home routers
is OpenWrt, which is an open-source operating system for
embedded operating systems based on Linux and primarily
used on embedded devices to route network traffic. To address
this issue, we re-design and benchmark multiple alternative
ML/DL models to enable intelligent traffic reshaping ap-
proaches on router OS using C language.

IV. DESIGN

A. System Design

We design a new system—privacy as a router operating
system service (PAROS) on OpenWrt OS [22] enabled home
routers. Figure 2 shows the system model to build PAROS.
OpenWrt is a highly extensible GNU/Linux distribution for
embedded devices, typically wireless routers. Unlike other
distributions, OpenWrt is built from the ground up to be a full-
featured, easily modifiable operating system (OS) for routers.
It provides a fully writable file system along with package
management, which allows high level user customization and
wildly applicable for different system architectures. OpenWrt
provides reliable abstraction to the hardware, which make
it suitable to deploy similar kernel modules on both X86
and ARM processor architectures [22]. Comparing with other
available home router OSes (e.g., DD-WRT), OpenWrt has
better version control and higher flexibility on customization.
Note that, PAROS can also be deployed on a home gateway
or middle box. Home router (with PAROS) is then connected
to Internet through Internet Service Providers (ISPs). Figure 3
shows the operational pipeline of PAROS. In essence, PAROS
first automatically segments and learns IoT device traffic rate

Fig. 2. The system model of our PAROS.

signatures. Then, PAROS leverages a new lightweight hidden
Markov model (HMM) to model user in-home behaviors,
which will guide the next artificial traffic signature injection
process. PAROS also employs a partial traffic reshaping ap-
proach to further obscure user private information exposed in
IoT traffic rates. Eventually, PAROS provides a full stack per-
formance evaluation and benchmarking for real home router
deployments.

B. Intelligent IoT Traffic Signature Learning

PAROS first learns network traffic rate signatures from a
smart home. Since PAROS is built in home router OS—
OpenWrt, it is very trivial for PAROS to detect smart home IoT
devices. Note that, although PAROS can report manufacture
brand for each IoT device using MAC address lookup API [3],
PAROS only extracts minimum necessary information from
each IoT device, which is only segmenting and assigning each
IoT device a system identifier (ID) so that PAROS can reshape
that device’s traffic rates. Different traffic patterns from the
same device are distinguished by pattern ID. The traffic pattern
information contains IP.internal and IP.external,
the internal IP normally remains same unless the user reboots
the router. The external IP indicates the address that the
IoT device contacting to, normally some address from the
device manufacturer’s server. The Duration column indicates
the length in second of this particular traffic pattern. It may not
be bounded by the TCP handshake since the device may have
several ports generating traffic simultaneously, which contains
more than one TCP/IP connections. The direction marks IoT
traffic as incoming or outgoing traffic, which 0 indicates IoT
device is sending traffic to remote server, and 1 indicates for
receiving traffic from it. The goal of this traffic rate signature
learning process is to ensure that external adversaries cannot
reliably distinguish the genuine IoT traffic rate signatures from
the later “artificially” replayed traffic rate signatures.

We store all the traffic signatures for IoT devices in a SQLite
database using C Interface. PAROS also takes additional steps
to ensure it is reliably difficult for external adversaries to
distinguish artificial traffic rates from real traffic rates. For
instance, PAROS also statistically learns the time, duration,
and also the fraction of traffic signatures in each category rate
levels (e.g., short, long, high, low, medium). PAROS uses this
fraction to weight each category’s future traffic rate signature
selection, such that the “artificial” traffic demand matches the
breakdown of real traffic demand. To eliminate the duplicated
traffic rate signature learning, PAROS leverages both Dynamic
Time Warping (DTW) approach [29] and Pearson Correlation
Coefficient (PCC) [24] to quantify similarity between existing
times series traffic rate signatures and “new” traffic signatures.
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Fig. 3. The system pipeline of our PAROS.

Note that, PAROS examines incoming traffic rate signatures
in the same manner, despite whether they are “old” or “new”
ones. Thus, PAROS can automatically learn the new traffic rate
“patterns” generated by the already connected IoT devices, and
also the traffic rate signatures from newly online IoT devices
which PAROS has never seen before.

C. User In-home Behavior Modeling

PAROS does not randomly inject artificial traffic rate sig-
natures, since external adversaries may still distinguish “fake”
traffic rates from the genuine ones. For instance, it is obvious
for external attackers to filter out “fake” randomly injected
traffic rate patterns of Amazon Alexa and Google Nest home
from 2 am to 6 am. Another example, people tend to use
washer before dryer, and thus earlier injected dryer event might
be “fake”. PAROS carefully replays traffic rate signatures
learned in Section IV-B when user in-home behaviors permit.

Prior approaches [6], [38] have explored the benefits of
user behavior model guided privacy preserving approaches
using Bernoulli distribution, Poisson distribution, Linear Chain
Conditional Random Field (LCCRF) and Long short-term
memory (LSTM) into their traffic “noise” injections into IoT
traffic traces. However, as we discussed in Section III, home
routers typically have very limited hardware resources and thus
might not be the good candidates to run these heavy ML/DL
models. To further evaluate this situation, we benchmark the
top three models, including hidden Markov model (HMM),
Long short-term memory (LSTM), and convolutional neural
network (CNN), which have been widely used in prior work.
Figure 4 shows the training cost comparison results of HMM,
LSTM and CNN model on UNSW dataset, which has 432,000
seconds daily usage traffic rates for 5 days in a smart home.
We find that HMM yields the shortest training time while can
still achieve a similar accuracy as other models’.

Our insight is that user in-home behavior can be derived
or modeled from the occurrence sequence of multiple IoT
device events in a smart home. For instance, a smart home
IoT hub (i.e., Amazon Echo, Google Nest Home) can be
configured to control multiple plugs and switches, which
creates a combination of IoT device events. Motion sensors
on smart doors and windows can also trigger the recording
of security camera video recording, which can be identified
as another combination of simultaneous IoT device events.
In addition, different IoT device events may be triggered by
the same user in-home activities but at different sequence and
frequency. And the whole house traffic rate is the aggregation
of these IoT event combinations and thus can be used to
learn user in-home behavior. Although Markov Model (MM)
reveals direct connections of IoT device status, it requests
user have the expertise to explicitly define all the event
combinations. In contrast, Hidden Markov Model (HMM)
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Fig. 4. The cost comparison when training HMM, LSTM, and CNN.

allows user to define a set of hidden status, which might
not have obvious connection with IoT device observations.
Thus, PAROS leverages HMM model to solve the user in-
home behavior learning problem. The learned HMM model
will guide later network traffic rate injection process.

However, HMMs, which are based on brutal-force approach
and forward-backward algorithm typically yield the time com-
plexity as of O(TnT ), where n is the number of hidden user
behaviors in a smart home, and T indicates the length of the
observed IoT device events. To address this issue and also
optimize the performance of HMM approach, we re-design the
HMM using C language which can actually achieve O(n2T )
using Baum-Welch algorithm. Baum-Welch algorithm is used
to find the maximum likelihood estimate of the unknown
parameters for HMM modeling. Comparing with heavy LSTM
or CNN modeling, Baum-Welch inspired HMM approach does
not require additional libraries and iterations. The detailed
algorithm of HMM approach is established in Algorithm 1.

D. Artificial Traffic Rate Signature Injection

Next, we explain how PAROS leverages HMM-based user
behavior model to inject artificial traffic rates into genuine
traffic rates. We first classify IoT devices into two categories,
including unidirectional and bidirectional traffic IoT devices.
Unidirectional Traffic Rate Injection. It is quite straight-
forward for PAROS to mimic and inject outgoing traffic for
unidirectional traffic IoT devices. These devices may include
temperature sensors, humidity sensors, personal weather sta-
tions, sleep sensors, security cameras, etc. Most of these IoT
devices transmit traffic rates to their IoT hubs or remote servers
to provide user service with the collected data.
Bidirectional Traffic Rate Injection. People are increasingly
deploying bidirectional traffic IoT devices in their homes.
These IoT devices may include voice speaks (e.g., Amazon
Alexa, Google Nest Home), Schlage door locks, Drop cam-
era, Google Nest, Honeywell thermostat, etc. However, only
very few prior approaches considered to reshape bidirectional
traffic rates. The most recent approach—PrivacyGuard [38]
used a third-party traffic and package editor and generator—
Ostinato [1], which supports multiple communication pro-
tocols to generate both outgoing and incoming traffic for
bidirectional traffic IoT devices. PrivacyGuard was deployed
both on Raspberry Pi and a remote server (with the mixture
of Master-Slave and Publish-Subscribe model). Unfortunately,
Ostinato is not available on resource limited home routers.

To address this issue, we develop a traffic generation
tool that can ping public domains, send request to public
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Algorithm 1: The User Behavior Modeling Algorithm
Initialization(Θ0, {O1:T })
Looping()
for l = 1, . . . , lmax do

1. Forward-Backward calculations:

α1(i) = πibi(O1), βT (i) = 1,

αt(i) =
[ K∑
j=1

αt−1(j)aji
]
bj(Ot),

βt(i) =

K∑
j=1

aijbj(Ot+1)βt+1(j)

for 1 ≤ i ≤ K, 1 ≤ t ≤ T − 1

2. E-step:

γt(i) =
αt(i)βt(i)∑K

j=1 αt(j)βt(j)
,

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1βt(j))

for 1 ≤ i ≤ K, 1 ≤ j ≤ K, 1 ≤ t ≤ T − 1

3. M-step:

πi =
γ1(i)∑K

j=1 γ1(j)
, aij =

∑T
t=1 εt(i, j)∑K

k=1

∑T
t=1 εt(i, k)

,

wkd =

∑T
t=1 γt(k, d)∑T

t=1

∑D
r=1 γt(k, r)

for 1 ≤ i ≤ K, 1 ≤ j ≤ K, 1 ≤ k ≤ K, 1 ≤ d ≤ D

end
Result({Θl}lmax

l=0 )

service APIs (e.g., National Weather Service (NWS) API,
OpenWeather API) and upload data to remote servers from
home routers using C language to mimic outgoing traffic flows.
Similar to PrivacyGuard [38], we also deploy a remote server
to mimic incoming traffic flows for bidirectional traffic IoT
devices. The remote server can be shared by multiple IoT
devices and run traffic editors to change the source IP/MAC
address in the pretend incoming traffics at run-time. In doing
so, PAROS is able to mimic incoming traffic from the source
“valid” IoT remote servers. In addition, PAROS selects traffic
rate signatures from SQLite database to inject at an injection
rate equal to the rate at which the home generates traffic when
the house is occupied. The final goal of this traffic injection
is to ensure the injected traffic patterns still fit the traffic
distributions that represent the regular user in-home behaviors
so that external adversaries cannot reliably distinguish the
injected traffic patterns from the genuine traffic patterns.

E. Partial Traffic Rate Padding

The prior step—HMM guided artificial traffic rate injection
has obscured most of the private information that are exposed
in the external observed traffic rates. However, as discussed
in Section II), the modified traffic rates might still expose
some minor spike changes that can be potentially identified

by external adversaries. Significant prior work [7], [9], [10],
[12], [13], [15], [23], [30], [36], [37] aimed at injecting more
traffic rate so that external observed traffic rates were “flat” and
thus hided more user private information. Unfortunately, due
to network traffic generator/editor latency, it is not feasible
to perfectly flatten traffic rates. To address this issue, we
proposed an additional partial traffic padding approach. Instead
of flattening traffic rates, we will reshape the traffic rates using
dynamic padding thresholds and extend reshaping periods for
random seconds. Note that, PAROS can automatically learn
an default trade-off point where smart home users can achieve
the “best” protection of their in-home privacy (in terms of ε-
security [23]) using the “least” additional traffic overhead. In
addition, for people who would prefer to trade more additional
traffic overhead for a better privacy guarantee, PAROS can
automatically finetune its partial traffic padding thresholds to
hide more private information in their home traffic rates.

F. Full Stack Privacy Guarantee Evaluation

PAROS provides a full stack privacy guarantee related
evaluations. In essence, PAROS first could evaluate the per-
formance of privacy guarantee using multiple metrics, in-
cluding Matthews Correlation Coefficient (MCC) [19], Pear-
son Correlation Coefficient [24], and Adversary Confidence
(AC) [38]. Secondly, PAROS also supports attack evaluations
from adaptive adversaries who may gain advanced knowledge
levels about a smart home after monitoring it for a long term.
Eventually, PAROS also use Wemo smart plug sensors to sup-
port energy-aware privacy guarantee evaluation that beyonds
prior smart home privacy defending approaches’ evaluations.
Note that, although PAROS currently leverages lightweight
HMM approach to model users in-home behaviors, we can also
potentially integrate with other lightweight ML/DL models to
achieve a more comprehensive understanding of user behaviors
in a smart home. However, evaluating the performance of these
“tiny” models is out of the scope of this work now and will
be investigated in our future work.

V. OPTIMIZATION

As we discussed in Section III, home router typically have
very limited memory hierarchy systems. We outlined the
optimization techniques we design to mitigate this issue.

A. Limited Memory for Traffic Rate Signatures

To understand this limitation, we first benchmark a smart
home that has 30 IoT devices for 5 days. We find that RAM
capacity almost has a linear relationship (45.35 KB per device)
with the number of IoT devices. In nowadays, people can
get ∼139 IoT devices from Amazon, which can result in
higher demand on RAM capacity. To mitigate this problem,
we propose a new memory data replacement approach.

B. SVM Assisted Memory Data Replacement

To minimize the RAM load on home routers, PAROS
leverages a new memory data replacement approach. We first
implement and benchmark the alternative approaches—First
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Fig. 5. The comparison of FIFO, LRU, LFU, and SVM assisted memory data
replacement approaches on 5 different experiments.

Come First Out (FIFO), Least Recently Used (LRU), Least
Frequently Used (LFU), and SVM using C language. Figure 5
shows the comparison results when applying FIFO, LRU,
LFU, and SVM on router memory data replacement process.
We find that SVM yield the least amount of RAM space. Thus,
we select SVM to assist PAROS’ memory management.

VI. IMPLEMENTATION

We implement PAROS both on a simulator and two real
widely deployed home routers, including NETGEAR Router
(R6700-AC1750) and TP-Link Router (Archer A7), using C.
We install OpenWrt 22.03.2 on VirtualBox VM to build our
simulator. We first convert openwrt.img to VBox drive. Then,
we apply “uci changes” to configure OpenWrt on VM 19.07.2.
The cross-compiling feature was also tested on two OpenWRT
releases in both x86 and ARM architecture. Both the simulator
and two home routers query real-time traffic rate readings at
routers every minute using cronjobs. We install tcpdump
to capture network traffic rates. We write bash scripts to store
traffic rates into pcap files on router ROM. We implement
PAROS’ algorithms and its optimizations. We deploy our
PAROS’ remote server on Amazon EC2 t1.micro instance with
a cost of $0.0035 per hour. We store the set of artificial traffic
rate signatures, indexed by time period, that are available for
replay in a SQLite3 (version 3.39.4) database. The size of
PAROS implementation is less than 2000 lines of C code.

We edit the config file, create makefile, edit the kernel
module, and load the new PAROS module. This could easily
be done either on a VM or home router by establishing an
ssh connection. The OpenWrt device has its own local IP and
MAC address, which runs just the same as a Linux machine
within the Local Area Network. For user in-home activity in-
ference attacks, we implement ML/DL-powered attack models
using Keras model library [16] and TensorFlow framework [5].
Note that, we only use these attack models to benchmark
different defending approaches’ performance.

VII. EXPERIMENTAL EVALUATION

A. Datasets

Dataset 1: UNSW. We downloaded publicly-available IoT
traffic rate traces from UNSW Sydney [31] that includes
second level network traffic traces of 22 IoT devices for
20.5 days. These raw traffic traces contain packet headers and
payload information. To evaluate our approaches, we process
the IoT traffic metadata traces to IoT traffic rate data and also
label all the user activities.

Dataset 2: PrivacyGuard Dataset. We downloaded Priva-
cyGuard dataset [38]. It was captured “mock” smart home
that has 4 graduate students operating 31 IoT devices daily.
PrivacyGuard was captured using NETGEAR AC1750 smart
Wi-Fi router that serves as the internal switch and the gateway
to the public Internet. It has totally 45 days 1 minute level
traffic rate traces of 22 IoT devices.
Dataset 3: IoT Device Captures (Kaggle #1). We down-
loaded the IoT Device Captures dataset from Kaggle, which
has 30 IoT devices and each IoT device was recorded for 40
minutes traffic rates.
Dataset 4: IoT Device Network Logs (Kaggle #2). We
also downloaded the IoT Device Network Logs dataset, which
captured 1 minute level network traffic traces of 14 IoT devices
for 5 days using NodeMCU wifi module.
Dataset 5: Our Dataset. We also deployed 21 IoT devices
in two real smart homes. The two homes are private houses
that have two and three occupants, respectively. We collected
second level traffic traces and their groundtruth for four weeks.
Ethical Consideration for Data Collection. We collected
data to explore the severity and extent of user privacy threat
from smart home network traffic traces. Our long-term goal
is to provide system solutions to enable people to re-gain
the control of privacy leakages. Similar to prior work, our
participants were one-to-one interviewed and provided user
privacy consent and agreement. We removed user identical
information and sampled the datasets. We followed our insti-
tution’s Institutional Review Board (IRB) exempt process.

B. Experimental Setup

PAROS on Virtual Machine. We implemented PAROS on
a virtual machine (VM)-based simulator. This PAROS imple-
mentation covers all the major PAROS processes, including
traffic rate signature learning, traffic rate injection, partial
traffic padding, and optimizations.
PAROS on Router #1. We implemented and deployed PAROS
on home router—NETGEAR Router (R6700-AC1750). This
PAROS implementation have all the major PAROS processes,
including traffic rate signature learning, traffic rate injection,
partial traffic padding, and optimizations.
PAROS on Router #2. We implemented and deployed PAROS
on home router—TP-Link AC1750 (Archer A7). This PAROS
implementation have all the major PAROS processes, includ-
ing traffic rate signature learning, traffic rate injection, partial
traffic padding, and optimizations.
Attack Models. We implemented ML/DL classifiers used in
prior work, including Logistic Regression, Support Vector
Machines (SVMs), and Random Forest. We benchmarked
different kernels for SVMs, including linear, linear passive-
aggressive, linear ridge, polynomial with 1∼10 degrees, and
radial basis function (RBF). We also designed a convolutional
neural networks (CNNs)-based DL approach to infer user
activities from IoT traffic rates. Inspired by the most notable
CNNs research—VGGnet [33], our CNNs architecture is com-
prised of input, convolutional layers (ReLU), max pooling,
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Fig. 7. User activity detection performance for 6 typical user in-home activities.

fully-connected layers and output. In addition, two fully-
connected layers with ReLU and another fully-connected layer
(without ReLU) are added to process the outputs.

C. Evaluation Metrics

Matthews Correlation Coefficient (MCC). We note that
standard evaluating metrics (e.g, accuracy, F1) would not work
well on highly imbalanced IoT traffic data [25]. We use the
MCC [19], a standard measure of a classifier’s performance,
where values are in the range −1.0 to 1.0, with 1.0 being
perfect user activity inference, 0.0 being random user activity
inference, and −1.0 indicating user activity inference is always
wrong. The expression for computing MCC is below, where
TP is the fraction of true positives, FP is the fraction of false
positives, TN is the fraction of true negatives, and FN is the
fraction of false negatives.

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(1)

Pearson Correlation Coefficient (PCC). The PCC [24] is a
measure of linear correlation between original and modified
traffic, computed as the covariance between the variables
divided by the product of their standard deviation. It has a
value between +1 and -1, where 1 is total positive correlation,
0 is no linear correlation, and -1 is total negative correlation.
Adversary Confidence (AC). We leverage AC to describe
the adversary’s ability to identify which time periods are
corresponding to certain user activities. Given a probability p
that user activity occurs independently in n time periods. AC
is estimated as empirical fraction of n time periods with traffic
corresponding to user activities. q is the probability decision
function choosing to perform non-activity traffic padding.

AC =
np

np+ n(1− p)q
(2)

D. Experimental Results

1) Preventing IoT Device Type Detection Attacks: We first
examine the preventing ability of 4 different approaches—
PrivacyGuard, PAROS on VM, PAROS on Router #1, and

PAROS on Router #2 regarding IoT device type detection.
Figure 6 shows the detection comparison results after applying
4 different defending approaches on 10 popular IoT devices.
We report accuracy using the best performing attack model
for each user activity. As we can observe from Figure 6,
before applying any defending approaches, original traffic
rates achieve the MCC of 0.83 across the 10 IoT devices. After
applying PAROS on VM, PAROS on Router #1, and PAROS
on Router #2 approaches, the modified traffic rates yield the
average MCC as of 0.20, 0.22, and 0.21, respectively. The best
performing attack models to detect 13 dif- ferent user activities
using two datasets.Interestingly, PAROS on VM, PAROS on
Router #1, and PAROS on Router #2 approaches all achieved
almost the same MCC as of PrivacyGuard’s—0.23. PAROS
approaches achieved the same performance using significantly
less hardware resources than prior work [6], [38].

Results: PAROS approach effectively prevents a wide set
of ML/DL-based IoT device type detection attacks in smart
homes. In particular, PAROS yields the same low average
MCC as the most notable work [38] using very limited
computing resources. PAROS is the best performing privacy
preserving approach that can run directly on router OS.

2) Preventing User Activities Detection Attacks: We next
examine the effectiveness of masking user activities by ap-
plying 4 different privacy preserving approaches. Figure 7
shows the detection comparison results after applying 4 dif-
ferent defending approaches on detecting 6 different in-home
activities. As shown in Figure 7, on average, original traffic
rates can achieve MCC as of 0.91. While, PrivayGuard and
PAROS approaches can yield MCCs as of 0.11 and 0.12,
respectively. There are slightly changes in MCCs of PAROS
on VM, Router #1, and Router #2. This is mainly due the
fact that the performance of PAROS on VM approach might
be affected by other job scheduling load on hosted machine.
In addition, Router #1, and Router #2 also slightly different
levels of hardware resources in terms of CPU, RAM, ROM
resources. As shown in both Figure 7 and Figure 6, PAROS
approaches consistently yield the same or slightly better MCCs
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than the most recent approach [38], which employed advance
machine learning (e.g., LSTM, CNN), and other much larger
scale framework to reshape traffic rates.
Results: PAROS approach effectively prevents a wide set of
ML/DL-based user activities inference attacks in smart homes.
Specially, PAROS yields the same MCC as of the most notable
prior work [38] using very limited computing resources.

3) Quantifying Accuracy When Varying Granularity of Traf-
fic Traces: We next evaluate user activity detection effect on
different traffic rate traces that have different level granulari-
ties, such as 1 second, 1 minute, 5 minutes, 10 minutes, and 30
minutes. In doing so, we can examine PAROS’ accuracy when
attacking on different granularities traffic rate traces. As shown
in Figure 8, unsurprisingly, higher granularity results in lower
user activity detecting accuracy in MCC. This is mainly due
to the facts that 1) PAROS approach perform consistently well
on traffic rates at different granularities, 2) fewer fluctuations
and spikes are observed in higher resolution traffic rate traces.
In addition, when traffic rate traces are becoming coarser,
some principle features (e.g., standard deviation, variation
coefficient, AUC) that machine learning-based attack models
rely on will become less identifiable. This will further obscure
user private information exposed in traffic rates.
Results: PAROS’ accuracy is a linear function of the granu-
larities of traffic rate traces. PAROS yields the MCC of 0.104
when attacking on 30 minutes level traffic rate traces, which
is nearly the same as random guessing, i.e., an MCC of 0.0.

4) Quantifying Traffic Overhead: Next we will quantify
the amount of network traffic overheads that are required
to perform the 4 different privacy preserving approaches.
Figure 9 reports the security (ε) and the amount of additional
traffic consumption for each approach in Y1 and Y2 axis,
respectively. We find that larger additional traffic overhead
will result in smaller security (ε), which indicates smart home
users can better protect their private information. Interestingly,
PAROS approaches achieve the trade-off between security (ε)
and additional traffic overhead. That says, PAROS consumes
the least amount of traffic overhead while achieves the best
performance to prevent user privacy leakage.
Results: PAROS consumes the least amount of traffic overhead
while achieves the best performance to protect user privacy.
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5) Preventing User Activities Detection by Adaptive Adver-
sary: We next examine the effect of different adversary confi-
dence (AC) and different level adaptive adversary on PAROS’
privacy preserving performance. As shown in Figure 10, the
external attacker’s AC drops significantly when PAROS is
given more traffic overhead. As shown in Figure 10, PAROS
(on home routers) can achieve AC as of 0.2 using 130% traffic
overhead. In addition, PAROS (on home routers) coverage
much faster than the most recent approach [38].
Results: Using PAROS, the adversary’s attack confidence
significantly drops when user permitting additional overhead.
Also, PAROS (on home routers) yields an AC of 0.2 when an
adversary can consume 130% additional traffic overhead.

6) Simulator Demonstration: Figure 11 demonstrates the
performance of PAROS (simulator and two real routers),
PrivacyGuard [38], and Hybrid approach. Y1 axis is reporting
average MCC and Y2 axis is showing security (ε). We find that
deploying PAROS on VM and home routers has achieved the
same level effectiveness on masking user privacy. In addition
to MCC and security (ε) of different approaches, we also
examine CPU and RAM utilization for PAROS simulator and
two real router deployments. As shown in Figure 12, we find
that PAROS on Virtual Machine, PAROS on Router #1 and
PAROS on Router #2 have the almost the same CPU and
RAM utilization when reshaping traffic rates (in Mode 3) in
the smart homes. For each approach, reshaping traffic rates
(in Mode 3) does not increase its power consumption. That
says, PAROS has demonstrated the performance consistency
in the ability of protecting user private information across the
simulator and two real home router deployments.
Results: PAROS simulator yields the same system overhead as
two real home router deployments. PAROS demonstrates the
performance consistency in protecting user privacy in smart
homes, with near-zero system overhead increasing.

VIII. CONCLUSION AND FUTURE WORK

We proposed a new traffic reshaping approach—PAROS
that enables people to significantly reduce the private infor-
mation leaked through IoT device network traffic rates. We
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implement PAROS both simulator and new kernel service
using language—C. We evaluate PAROS on open-source router
OS—OpenWrt enabled virtual machine and also on two real
best-selling home routers. We find that PAROS can effectively
prevent a wide range of state-of-the-art adversarial machine
learning-based user in-home activity inference attacks, with
near-zero system overhead increasing. We plan to investigate
additional efficient tiny machine learning models that might
more better model user in-home activities using limited hard-
ware resources. We will also deploy PAROS on more routers to
further benchmark and improve PAROS’ online performance.
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