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Abstract—The Internet of Things (IoT) has been erupting
the world widely over the decade. Smart home and smart
building owners are increasingly deploying IoT devices to monitor
and control their environments due to the rapid decline in
the price of IoT devices. The recent intensive research has
shown that network traffic traces of IoT devices have significant
cybersecurity and privacy issues. These security and privacy
defending techniques have enabled sophisticated approaches to
ensure security and preserve user privacy. However, due to
the fact that different approaches are evaluated using their
own datasets, their own developed security and privacy attack
models, and their own evaluating metrics, it is being significantly
difficult to make a fair and comprehensive comparisons among
different IoT security strengthening and user privacy preserving
research to better understand IoT security issues and end-user
benefits. To address this problem, we present a deep learning-
based adversarial attack model framework—SmartAttack, which
enables a set of sophisticated adversarial attack models that
can be leveraged by researchers and industrial users from IoT
security community to better evaluate their work. In essence, we
leverage the most widely used unsupervised machine learning
and deep learning models to design and implement these attack
models. SmartAttack also provides user options to select the
detailed configuration for each attack model, such as kernel,
dataset splitting, cross-validation states, and evaluating metrics.
We also evaluate the performance of SmartAttack using two
different datasets. In addition, we made the source codes and the
related datasets of SmartAttack publicly-available on our research
website such that researchers can use our SmartAttack to
benchmark their security strengthening and privacy-preserving
approaches.

Index Terms—Deep Learning, IoT security, Adversarial Ma-
chine Learning, Attack Models, User Privacy.

I. INTRODUCTION

The Internet of Things (IoT) has been widely deployed in

smart homes especially in recent decades. The total installed

base of IoT connected devices is projected to amount to 75.44

billion worldwide by 2025, a fivefold increase in ten years [1].

Many IoT device manufacturers have matured IoT ecosystem

provided for smart homes or facilities for data collecting,

appliance controlling, environmental data monitoring, etc. Ap-

plying IoT devices brings efficiency to many areas including

smart home and industrial, yet the grooming IoT ecosystem

shows vulnerability to cyberattacks.

For instance, “Some popular home security cameras could

allow would-be burglars to work out when you’ve left the

building, according to a study published Monda. Researchers

found they could tell if someone was in, and even what they

were doing in the home, just by looking at data uploaded by

the camera and without monitoring the video footage itself,”

reported on CNN Business [2]. In addition, Internet Service

Providers (ISPs), such as Comcast, Time Warner, Sprint and

Verizon, are collecting users’ network traffic data and sharing

them with third-parties for multiple purposes like generating

monthly bills, detecting service outage, or providing cus-

tomized promotions. In addition, ISPs are selling personal

data like web browsing history without user’s consent [3].

“Any service that provides Internet access can obviously see

what resources users are accessing. And even with encryption,

traffic patterns provide some information about activity.” [4].

Although most IoT devices use encrypted network trans-

mission and can apply these traffic reshaping approaches,

there still exists side-channel information leakage to the on-

path external adversaries, since user in-home activities highly

correlates with simple time-series data statistical metrics, such

as mean, variance, and range. Thus, the traffic data generated

by IoT devices has significant privacy threats. Figure 1 shows

the network traffic patterns of three widely deployed IoT

devices. Prior work presented various methods that can be

leveraged to extract a user’s sensitive privacy information from

IoT network traffic traces. For instance, applying data mining

on smart meters recorded energy consumption data [5], using

MAC addresses to distinguish IoT devices [6], or attacking

on a specific communication protocol of IoT devices [7], etc.

These attacks have been proved effective under different levels

of hardware and software resource limitation.

Therefore, significant recent research [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17], [18], [19], [20] are presented

to mitigate or address these user security and privacy issues.

Unfortunately, many prior approaches often uses different

adversarial attack models, different datasets, and different

evaluation metrics to benchmark their proposed techniques.

And this has made it significantly difficult for researchers

and end users to benchmark and comprehensively understand

the benefits and limitations of different security and privacy

defending approaches.

To address this problem, we design a new open-sourced

adversarial attack model framework—SmartAttack, which en-
ables a set of general sophisticated adversarial attack models

that can be leveraged by researchers and industrial users

of IoT security community to benchmark and evaluate their
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Fig. 1. IoT device traffic volume traces exposed to the on-path external adversaries.

work. Our hypothesis is an open-sourced adversarial attack

toolkit, which is built using the most recent Machine Learning

(ML) and Deep Learning (DL) models, can enable a fair

and comprehensive evaluation of the state-of-the-art security

strengthening and privacy preserving techniques in IoT se-

curity and smart home research. In essence, we leverages

the most widely used ML and DL models to design and

implement these attack models from the perspective of external

on-path adversaries. SmartAttack also provides user options to
select the detailed configuration for each attack model, such as

kernel, dataset splitting, cross-validation states, and evaluating

metrics. We also evaluate the performance of SmartAttack
using two different datasets. In evaluating our hypothesis, this

paper makes the following contributions.

Design Challenges. We highlight numerous challenges that we
met when designing the new adversarial attack framework—

SmartAttack. The performance of adversarial attack models are
affected by numerous variables, including data pre-processing,

kernel selection, hyper-parameter tuning, cross-validation, ran-

dom states, etc. SmartAttack addresses these issues by en-

abling both empirical and user selective configurations to build

adversarial attack models. In addition, SmartAttack has to

handle large amount of time-series network traffic and supports

both fast-speed and low-speed granularities data resampling.

SmartAttack Design. We present the design of SmartAttack, a
new open-sourced adversarial ML-based and DL-based attack

model framework that can enable a wide set of general sophis-

ticated adversarial attack models for researchers and industrial

users to benchmark and evaluate their security and privacy

research work. In essence, SmartAttack enables users to select

the detailed configuration for each attack model, such as

kernel, datasetsplitting, cross-validation states, and evaluating

metrics. SmartAttack also presents the most effective attack

model per each user in-home activity threat.

Implementation and Evaluation. We implement the new
SmartAttack toolkit using Python and also other widely

available open-source frameworks. We evaluate SmartAttack

using two different datasets—UNSW Sydney Smart Home

Dataset [21], and our own “mock” smart home dataset that we

deployed and collected in our lab space. The results show that

SmartAttack is capable of detecting all 12 smart home user

activities with considerable robustness (most of the activities

can be reliably detected by more than one ML/DL models.)

Releasing Datasets and Code. We release all the datasets
and the source code of SolarFinder on our website [22] such

that other researchers may use SmartAttack to benchmark their

future work.

II. BACKGROUND

In this section, we first review attack models that the most

recent research used to benchmark and evaluate their work. We

then analyze the major issues of existing models that motivate

our new open-source adversarial attack toolkit—SmartAttack.

A. Attacking Scenario

Below we present two typical attacking scenarios of the

most recent work that defines an external adversary’s capabil-

ity. We introduce the models and evaluate their feasibility on

real attacks.

Monitoring Network Traffic Traces. An attack scenario is, “a
victim visits the attacker’s website, which contains a malicious

script that communicates with IoT devices on the local network

that have open HTTP servers” [23]. Some prior research [6],

[24] also assumes that external adversaries have device-level

information. In this circumstance, attackers are able to capture

packets generated by IoT devices, which means there are

no obstacles on identifying device traffic and extracting user

activity. However, in normal circumstances, as we described

above, no device-level information should be presented in the

network traffic traces that ISPs shared with third-parties.

Monitoring Network Traffic Volume Data. Prior work [11],
[12] sets more limitations to external adversaries by only

providing network traffic volume data. In this case, distin-

guishing devices can no longer rely on capturing packet

headers. Furthermore, the overlapping of traffics generated by

simultaneously awakened devices will hide important finger-

print information. Comparing with the former scenario, this

one gives a better simulation since attackers are only capable

of monitoring network traffic volume data. Unfortunately, the

traffic volume data that ISPs provided to third-parties could

be further processed by re-sampling, which may reveal user-

in home activity at different granularities.

B. Evaluation Metrics

We next outline the most widely used evaluating metrics

that are employed by prior work to evaluate their attacking

protecting approaches. We analyze the accuracy and robustness

to better understand the limitations of these evaluation metrics.

Adversary Confidence. Adversary Confidence is defined as
the expected ratio of correct activity inferences to attempted

activity inferences by an adversary with no prior knowledge
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when traffic rate metadata is defended by a particular tech-

nique. The Adversary Confidence c is:

c =
np

np+ n(1− p)q
=

(
1 +

(1− p)q

p

)−1

(1)

where n is the given time periods, p is the probability that
user activity occurs idependently, and q is the probability that
the decision function chooses to start non-activity padding

independently during any time period. [24].
Accuracy and Root Relative Squared Error (RRSE).
Accuracy are applied to evaluate an IoT device classifier in

the work [21]. The author calculated accuracy based on true

positive rate and false positive rate, along with RRSE to

monitor the error rate. Given TP as true positive, FP as false

positive, TN as true negative, FN as false negative, Pij as the

value predicted by the individual model i for record j and Tj

as the target value, the accuracy ACC and RRSE Ei can be

calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
(2)

Ei =

√ ∑n
j=1(Pij)− Tj)2∑n

j=1(Tj − 1
n

∑n
j=1 Tj)2

(3)

F1 Score. The F1 score is defined as a weighted average of
the precision and recall, where an F1 score reaches its best

value at 1, and worst score at 0. The relative contribution of

precision and recall to the F1 score are equal. The formula for

the F1 score is:

F1 =
2 ∗ (precision ∗ recall)
(precision+ recall)

(4)

However, to evaluate user activities privacy preserving re-

search in a smart home, we often have to handle a highly

unbalanced data—positive and negative values are highly

unequal. That says, true negative and false negative should

also be taken into consideration, thus these metrics would not

accurately present the performance of a ML or DL model.

C. Summary
As we can see from the prior work above, each prior work

often user its own set of attack model, dataset, and metrics to

evaluate its performance regarding to data security and privacy

issues. It is difficult for other researchers to directly understand

the benefits and limitations among the prior work. In addition,

many attack models that are leveraged in the prior work did

not provide details about how their classifiers are trained

(e.g., supervised, re-trained, unsupervised), how their datasets

are splitted or cross-validated for training or testing. These

different setups and configuration may significantly affect

the performance of prior work. These above insights have

guided the design of our new open-sourced and configurable

adversarial attack toolkit—SmartAttack.

III. DESIGN CHALLENGES

Our goal is to design a open-sourced deep learning-based

adversarial attack model framework—SmartAttack, which en-
ables a set of general sophisticated adversarial attack models

that can be leveraged by IoT researchers and IoT industrial

users to better evaluate their work. This toolkit should be

capable of running across different IoT related platforms,

while still keeping the same efficiency when attacking secu-

rity strengthening and privacy preserving approaches. Also,

to fit various research scenarios, the toolkit should provide

user selective configuration options for customizing model

training process. Unfortunately, none of these issues has been

completely fulfilled in prior work. In this section, we highlight

these challenges that we handled to design SmartAttack.

A. Platform Applicability and External Dependencies

To ensure our SmartAttack toolkit capable of deploying on

different platforms, we investigated several widely used IoT

applications, such as consumer, organisational, and industrial

applications [25]. These scenarios typically have limitations

such as highly depending on some specific operating sys-

tems, having special dependencies on certain program en-

vironment, or significant training time and thus significant

energy consumption. Unfortunately, we observe that many

prior work [23], [6], [24], [11], [12] have attacking scenar-

ios that require significant energy consumption, which are

difficult to deploy on many embedded systems or single-

board computers (SBC). Furthermore, we have to guarantee

the external dependencies to be open-sourced and lightweight,

which would allow end user don’t have to configure or retrain

their ML or DL models to initialize the adversarial attacks

using GPUs or remote servers. To address this challenge, we

developed the attack model in Python, and we leveraged
Scikit-Learn [26] for training ML/DL based attacking models.

B. Big Data Pre-processing

We study on the publicly-available IoT traffic traces from

UNSW Sydney [21], which are 6.4 GB pcap file that contains
packet-level network traffic trace data of 22 IoT devices for

20 days. Training or testing directly on this significant amount

of IoT network traffic traces is inefficient for attack model

training and hype-parameter tuning. Furthermore, in order

to simulate the various types of time-series data that are

exposed to external adversaries, we need to pre-process the

IoT network traffic traces into different formats as well as

different granularities. We leveraged Pandas [27] and Scikit-

Learn [26] for data preprocessing. In addition, the data pre-

procssing module of our attack model toolkit—SmartAttack

supports the most common data file formats, including pcap,
pcapng, txt, csv, and we have successfully tested at different
granularity as of per second, per minute and per hour level. To

overcome the evaluation limitation using a single dataset, we

deployed a new “mock” testbed in our lab space to provide

SmartAttack users another complete IoT traffic dataset.

C. User Tunable Model Training

Many prior approaches assume the smart homes they are

targeting at have static deployment of IoT devices, and thus

typically these approaches developed a static attack model

using certain special ML or DL models. In addition, many
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Fig. 2. The pipeline for SmartAttack toolkit.

existing work did not explain how they setup their experi-

mental evaluations, and rather provided a “black-box” models

for users to use. For instance, how to split the whole dataset

into training, testing and validation portions may result in

significant biased evaluation results. Thus, we have to provide

configurable attacking models to fit different research scenar-

ios. In addition, it is important to ensure the same data pre-

processing processes are applied across the different ML or

DL models that are being evaluated. To address this challenge,

SmartAttack enables a wide range of user tunable “functions”,

such as dataset splitting, kennels, hypo-parameter tuning, grid

searching methods and evaluating metrics, which allow users

to perform a comprehensive evaluation using a whole set of

ML or DL models with their own configuration preferences

based on their detailed research problem.

IV. SMARTATTACK DESIGN

In this section, we detailed how we design a new open-

sourced adversarial attack model framework—SmartAttack,

which enables a set of general sophisticated adversarial attack

models that can be leveraged by researchers and industrial

users of IoT security community to benchmark and evaluate

their work. SmartAttack is capable of attacking on smart home

IoT network traffic traces to learn user sensitive activities, and

provides a fair attacking performance evaluation on different

security strengthening and privacy preserving techniques.

A. System Design

Figure 2 shows the system design pipeline of our new

adversarial machine learning toolkit—SmartAttack. ML and

DL algorithms usually benefit from standardization of the

datasets. First, we leverages the big data analytical approaches,

including both standardization and normalization algorithms,

to pre-process the input smart home network traces. Next, we

build a wide set of adversarial attack models using ML and

DL models. Note, rather than the prior work only provides

user a “black-box” functions for this modeling traing process,

SmartAttack fully enables the user selective options during

this modeling process. For the general users that is not able to

provide their own choices and prefer to receive the decent

performance in a “unsupervised” manner, SmartAttack can

recommend the most effective attacking model based on its

large scale empirical observations per user in-home activity

attack. Eventually, SmartAttack has integrated with many fair

and the state-of-art evaluating metrics to assist users to fully

benchmark their proposed research work.

B. Traffic Data Pre-processing

SmartAttack is designed and optimized to handle large scale

IoT traffic data. In particular, SmartAttack can provide a wide

of data pre-processing services, such as data cleaning, data

standardization and data normalization. The goal of this data

pre-processing is to remove marginal outliers in the input

dataset. In addition, SmartAttack already provides the ready-

to-use features that have been proven to be very effective

at attacking smart home traffic data by many prior research

work [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],

[19], [20], including our own [28].

For instance, to pre-process UNSW dataset, which is packet-

level network traffic traces of 22 IoT devices for 20 days,

we first remove the most device-level information including

packet headers and contents from the raw pcap files. Then,
we down-sampled the original dataset into 20 day’s 1 minute-

level dataset which has the size of 2.4MB csv file and

contains 28000 rows. We leverage Pandas to further process
this training dataset. As we expected, the total training time

has significantly reduced for attack model training and only

requires less than 20 seconds on an Intel(R) Core(R) CPU

i9-9900k @ 4.70 GHz. Similarly, we setup a “mock” smart

home with 5 occupants and 16 IoT devices, and SmartAttack

has been tested to be effective as well. We have successfully

tested different formatting of time-series data including pcap,
pcapng and csv, as well as different time granularity including
1 second, 1 minute and 1 hour level, respectively. The pre-

processing module of our SmartAttack stays efficiently oper-

ative when the duration of the input dataset varing from 7 to

30 days, which is sufficient to train regular attack models.

C. User Tunable Adversarial Machine Learning Modeling

Once the input dataset (and its principle features) has been

pre-processed, SmartAttack then enables users to customize

the training and testing processes of different attack models.

The goal is to provide users the fully control over the at-

tack model building process such that users can “tailor” this

modeling based on their own needs to fit different research

scenario. In essence, SmartAttack enable users to select the

following principle “parameters” in the model training, testing

and validation process.

Kernel Selection and Grid Search. Although most ML and
DL models have been proved to be effective on extracting user

sensitive in-home activities from network traffic traces, the

different ML and DL models have shown different accuracy

performance over the same dataset. In addition, when training

the same Ml/DL model, the different configuration selections

often result in significant different levels of attacking accuracy.

In the current released SmartAttack, we implemented the

following ML/DL models that perform well in extracting smart

home user activities: Decision Tree, Logistic Regression, K-
Nearest Neighbours (kNN), Naive Bayes, Random Forest, and
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Support Vector Machines (SVMs) with different kernels. We

also provide the a set of grid searching approaches. In addition,

to reduce the grid search for the multidimensional parameter

spaces, we also provide ready-to-use parameter spaces for

users to start to train their models for best efficiency.

Cross Validation. Next, SmartAttack enables users to oversee
another critical process—cross validation to train an accurate

ML/DL smart home attacking model. The goal of this step is

to address the potential over-fitting problem in the attacking

model training process. Many ML/DL model learn their pa-

rameters for a specific prediction function and test them on

the same dataset. However, this training process may result

in a overfitting situation: the models can simply repeat the

groundtruth labels of the training dataset that it has just seen

would report a perfect accuracy score but would simply fail

to predict any yet-unseen testing dataset. SmartAttack enables

users to mitigate this issue by allowing users to specify a

range of n—cross folds, m—random states, and grid search

parameter spaces. In addition, user activity information is

highly time-sensitive, which sets a limit to cross validation n—
cross folds and m—random states. For instance, going back

to a home typically would generate the network traffic of door

sensors, TV, laptop and other regular home use IoT devices.

Simply crossing over the dataset would remove the features

that the potential ML/DL attacking model can leverage to

attack IoT devices and their user privacy information. To

address this problem, SmartAttack learns a proper sliding

window size—s when training user activity attacking model.
In SmartAttack, we also provide a pre-set n andm which have

good prior cross performance in general smart home attacks.

Training and Testing Dataset Splitting. Many ML/DL bases
system users do not set up or calibrate the sample ratio of

training to testing of their models. Different splitting ratios

have resulted in significant different accuracy level of smart

home attack models. SmartAttack provides empirical ratios for

each smart home network traffic attack. SmartAttack enables

users to customize their dataset splittings such that they

can train a reasonably accurate Ml/DL classifier in a timely

matter. However, smart home users typically have their activity

routines at the time scales of one day level and one month

level. SmartAttack learns the suggested user “tunable” and

default splitting ratios for different attack scenarios.

Pre-Trained vs. Re-Trained. In general, SmartAttack sup-
ports users to train and test their attack models in both pre-

trained and re-trained modes. In real practice, SmartAttack

supports users to pre-train their ML/DL based attacking mod-

els and then deploy these attacking models on IoT hubs,

routers, or other hardware resource limited IoT devices to

initialize these sophisticated adversarial attacks. However,

SmartAttack can also support onsite re-trained models when

the potential IoT hardware deployment can support these

DL/ML classifier re-training. It is expected that re-trained

adversarial attack models are having better performance than

the pre-trained ones. In addition, SmartAttack periodically

refreshes the detected list of IoT devices in a smart home, and

provide users the recommendations proactively to select either

pre-trained or re-trained mode for a given IoT device. Rather

than the pure or native the existing attacking models proposed

in prior work, SmartAttack leverages adversarial ML and DL

techniques to design and implement a wide set of effective

attack models that are aiming at learning user in-home activ-

ity without smart home users’ authorizations. The (external)

adversaries can apply any data mining or advanced inferring

techniques to “hack” the IoT devices, by understanding the

underlying fundamental relationship between user behaviors

and the network traffic traces generated by these IoT devices.

D. Fair Performance Evaluating
As we had discussed in the background section, many prior

work use their own evaluating metrics, rather than use general

evaluating metrics that can enable users to clearly understand

their approach’s benefits and limitations straightforwardly. In

addition, many IoT traffics are not reflecting continuous status.

For instance, rather the significant and high frequency network

traffic traces generated by a laptop or TV, the duration for

many other IoT devices like door sensors, occupancy sensors

are short, and it also has a relatively low frequency (a.k.a.

inactive class devices in this paper). That says, in real practice,

the IoT traffic dataset we used or collected, are highly unbal-

anced regarding certain IoT devices’ appearance frequency in

the whole traffic traces. For instance, in the UNSW dataset,

we identified 12 user activities and most of them have a

roughly 50:1 ratio between active and inactive classes. To

address this issue, SmartAttack implements or integrates with

many fair and robust metrics such that researchers can directly

benchmark their work’s performance against other related

work. We outline two primarly metrics—Matthews Correlation

Coefficient (MCC) and Cohen’s Kappa (CK).
Matthews Correlation Coefficient (MCC). To quantify the
accuracy of different user privacy enhancing approaches, we

note that the standard evaluating metrics, e.g, accuracy, F1,

would not work well on our highly imbalanced IoT traffic

data. Based on the recommendation from prior work [29], [30],

we use the MCC [31], a standard measure of a classifier’s

performance, where values are in the range −1.0 to 1.0, with
1.0 being perfect user activity detection, 0.0 being random user
activity prediction, and −1.0 indicating user activity detection
is always wrong. The expression for computing MCC is below,

where TP is the fraction of true positives, FP is the fraction of

false positives, TN is the fraction of true negatives, and FN is

the fraction of false negatives, such that TP+FP+TN+FN= 1.

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(5)

Cohen’s Kappa (CK). The Cohen’s kappa [32] is a measure
of the agreement between two classifiers who each classify N
items into C mutually exclusive categories. The definition of

Cohen’s Kappa is as follows,

κ = 1− 1− po
1− pe

(6)

where po is the relative observed agreement among classifiers,
and pe is the hypothetical probability of chance agreement,
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Fig. 3. The comparison results of 3 different attack models using F1, MCC,
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using the observed data to calculate the probabilities of each

classifier randomly seeing each category. If the classifiers are

in complete agreement then κ should be 1. If there is no

agreement among the classifiers other than what would be

expected by chance, κ = 0. SmartAttack employed the general
and fair metrics—Matthews Correlation Coefficient (MCC)

and Cohen’s Kappa (CK) to evaluate the researchers’ new

security and privacy defending approaches.

F1 = 2TP/(2TP + FP + FN) (7)

F1 score is able to reflect the true accuracy of a binary

ML/DL classifier when the input dataset is well-balanced.

However, as shown in Figure 3, we evaluate three different

ML-based attack models, and we find that different metrics

show different results. This is mainly due to the fact that the

input smart home network trace dataset is highly imbalanced,

and F1 score is not considering the significant true negatives

(TN) in testing dataset, as shown in the Equation IV-D.

SmartAttack reports the accuacy for this kind of models using

MCC an CK, which can evaluate the true accuracy for each

model in fair and comperhensive manner.

V. IMPLEMENTATION

We implement the SmartAttack prototype in Python using
multiple widely available open-sourced frameworks, including

Pandas [27], and Scikit-learn [26]. SmartAttack takes IoT traf-

fic data as input, applies data pre-processing and re-sampling,

and leverages multiple Ml/DL methods to attack smart home

user in-home activity information. For data pre-processing, we

use Pandas for efficiently edit the csv files. The processing
time for the 2.4MB, 28000 rows file can be limited to less

than 10 minutes on a Raspberry Pi 3. We use the Scikit-

learn ML library in Python to implement the attacking on
user activities. We implement a wide set of ML models for

SmartAttack, including Decision Tree, Logistic Regression, K-

Nearest Neighbours, Naive Bayes, Random Forest, and Sup-

port Vector Machine (SVM). We also implemented different

kernels for SVM classifiers, including linear, linear-passive-

aggressive, linear ridge, polynomial with 1 ∼ 10 degrees, and
radial basis function (RBF). We have already optimized the

parameters for these models an provide multiple user “tunable”

options that allow users to customize parameter setting (via

grid search), dataset splitting and pre-train/re-train options. We

Fig. 4. The overview of SmartAttack prototype

also deploy a SmartAttack testbed (shown in Figure 4) in our

lab space. The network traffic data is captured from the smart

Wi-Fi router and periodically synchronized with Raspberry

Pi 3B for processing. All of SmartAttack adversarial attack

models are learned and evaluated on Raspberry Pi.

VI. EXPERIMENTAL EVALUATION

In this section, we describe datasets, evaluating metrics, and

evaluation results for our SmartAttack toolkit.

A. Datasets

We use traffic traces from 1 “mocked” smart home and 1

public dataset for the evaluation of SmartAttack. Both datasets

are resampled to 3 different granularities— 1 second, 1 minute

and 10 minutes level to test the robustness of our approach.

Dataset 1: UNSW: We downloaded publicly-available the IoT
traffic traces from UNSW Sydney website [21] that contains

packet level network traffic data of 22 IoT devices for 20 days.

The raw traffic data was directly captured from the router

as pcap format, which contains detailed packet information
including header and body, as well as payloads. To evaluate

our attacking approaches of SmartAttack and perform a proper

simulation to an external adversary, we cleaned the data to

drop packet level information, and resample the traffic payload

as needed. Since this dataset didn’t provide ground truth

information for user activities, we write a python script to
automatically label user activities based on IoT traffic patterns.

Dataset 2: SmartFIU: We set up a “mocked” smart home
in our lab spaces which has 4 students staying in the room

and operates 31 IoT devices daily. We first set a NETGEAR

AC1750 smart Wi-Fi router flashed with DD-WRT—a Linux

based open-source firmware. All the traffic data generated by

the IoT devices was captured through tcpdump and stored
to a 128GB USB drive connected to the router. Similar with

dataset 1, our raw pcap files are cleaned and resampled. We
recorded all of our interaction with IoT devices as well as

occupancy status information as groundtruth for evaluation.

B. Evaluating Metrics

We use the metrics—Matthews Correlation Coefficient

(MCC) to evaluate the performance of different SmartAttack

approaches. The details of MCC and CK have been discussed

in the design section.
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Fig. 5. SmartAttack performances on 13 user activities.

C. Experimental Results

We next evaluate the performance of SmartAttack in 2 folds.

First, we performance all the ML/DL-based adversarial attack

which are provided in SmartAttack as shown in Figure 5, and

then report the best performing attack model for each user

in-home activity as shown in Table I.

User “tunable” evaluation. As shown in Figure 5, SmartAt-
tack enables users to select the 11 different ML/DL models

as their adversarial attack models. Interestingly, even the

same ML/DL-based adversarial attack model has significant

different performance when attacking different user in-home

activities. For instance, SVM (with Linear Ridge Classifier)

reports the MCC as of 0.97 when attacking the activity (User

is listening to music?), while only yields a MMC of attacking

the user activity (Taking care of baby?). As we discussed in

the design section, this is mainly due to the fact that how

significant, how long and how often per each specific IoT

device event. Similar results can be observed on other ML

classifiers as well. In addition, as we can see from Figure 5,

for the same SVM models but different kernels and grid search

methods also yield significant different attacking performance.

These results also reflect the necessity of our insight—enabling

users the options to costimzie or tune their ML/DL classifiers

are critical in evaluating security research work.

Results: SmartAttack enables users the options to select dif-
ferent Ml/DL models to build their attack models. In doing so,
SmartAttack can provide users a comprehensive understanding
of benefits and limitations using different ML/DL models and
their detailed configurations to attack smart home users.
Fair and comprehensive evaluations. As shown in Table I,
SmartAttack is able to identify the best performing adversarial

attack model for each user activities. As expected, at least one

adversarial attack model yields a MCC which is > 0.6) among

11 of 12 activities, and all of them also report high Cohen’s

Kappa. That says, SmartAttack can provide users the most

effective attack model which can receive the agreement over

all the classifiers. Regarding user activity (Control switches),

SmartAttack achieves a highest MCC value as of 0.5056,

which is the lowest result among all 12 different user activities.

This is mainly due the fact that the network traffic pattern

for smart switches is typically a short and sharp pulse signal,

which is likely to be treated as noise/background traffic. In

addition, Table I indicates that the input dataset is imbalanced

sample dataset which has 0∼5% TP and 95∼99.99% TN. By

employing MCC and CK, SmartAttack is still able to evaluate

the different attack models in a fair manner.

Results: SmartAttack yields the MCC values in a range of
0.62∼1.00 among 11 of 12 user in-home activities. Thus,
SmartAttack is capable of effectively and accurately detecting
user activities from smart home IoT traffic traces.
Limitation: For IoT devices that have traffic patterns as of
short duration or low payload, SmartAttack achieves an MCC

value as ∼0.5. This is mainly due the fact that the network
traffic generated by these IoT devices (e.g., smart switches,

wemo plugs) can be easily mislabelled as outliers in traffic

traces. We plan to leverage generative adversarial networks

(GAN) to address this issue in future work.

VII. CONCLUSION

This paper presents SmartAttack, a new adversarial attack

model framework that can be leveraged by researchers and

users from IoT security community to better evaluate their

work. In essence, we leverages the most widely used machine

learning and deep learning models to design and implement

these attack models. SmartAttack also provides user options to

select the detailed configuration for each attack model, such as

kernel, dataset splitting, cross-validation states, and evaluating
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User Activities Model TP FN TN FP MCC Cohen’s Kappa
Talk to smart assistant Random Forest 1.34% 0.54% 98.01% 0.11% 0.8082 0.6964
Control switches Random Forest 0.22% 0.25% 99.34% 0.19% 0.5056 0.7813
Print files SVMs (LinearPassiveAggressive) 0.12% 0.02% 99.86% 0.00% 0.9128 0.9127

Take care of baby SVMs (RBF) 0.13% 0.01% 99.86% 0.00% 0.9534 0.9539
Use smartphone Decision Tree 2.99% 0.72% 95.60% 0.69% 0.8023 0.9970
Use laptop Decision Tree 0.24% 0.13% 99.48% 0.15% 0.6238 0.8719
Walk in home Decision Tree 3.86% 1.57% 92.72% 1.85% 0.6750 0.9413

Check body condition SVMs (poly-2) 0.13% 0.01% 99.86% 0.00% 0.9574 0.9576
Control lights Decision Tree 0.21% 0.00% 99.78% 0.01% 0.9732 0.9990

Check weather condition Random Forest 0.19% 0.00% 99.81% 0.00% 1.0000 1.0000
Play music SVMs (LinearRidgeClassifier) 0.18% 0% 99.79% 0.01% 0.9697 0.9706
Control plugs Decision Tree 0.19% 0.02% 99.76% 0.02% 0.8887 0.9997
Other Activities Logictic Regression 81.56% 2.83% 11.77% 3.84% 0.7405 0.7725

TABLE I
THE BEST PERFORMING ATTACK MODELS TO DETECT 13 DIFFERENT USER ACTIVITIES USING UNSW SYDNEY DATASET [21].

metrics. We evaluate our approach using 2 different smart

home datasets. The results show that SmartAttack can accu-

rately detect 12 user in-home activities, and thus can employed

by IoT security researchers to evaluate their potential security

strengthening and privacy preserving approaches.
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