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A B S T R A C T   

Homeowners are increasingly deploying rooftop solar photovoltaic (PV) arrays due to the rapid decline in solar 
module prices. However, homeowners may have to spend up to ~$375 to diagnose their damaged rooftop solar 
PV system. Thus, recently, there is a rising interest to inspect potential damage on solar PV arrays automatically 
and passively. Unfortunately, recent approaches that leverage machine learning techniques have the limitation of 
distinguishing solar PV array damages from other solar degradation (e.g., shading, dust, snow). To address this 
problem, we design a new system—SolarDiagnostics that can automatically detect and profile damages on 
rooftop solar PV arrays using their rooftop images with a lower cost. In essence, SolarDiagnostics first leverages 
an K-Means algorithm to isolate rooftop objects to extract solar panel residing contours. Then, SolarDiagnostics 
employs a convolutional neural networks to accurately identify and characterize the damage on each solar panel 
residing contour. We evaluate SolarDiagnostics by building a lower cost prototype and using 60,000 damaged 
solar PV array images generated by deep convolutional generative adversarial networks. We find that Solar
Diagnostics is able to detect damaged solar PV arrays with a Matthews correlation coefficient (MCC) of 1.0. In 
addition, pre-trained SolarDiagnostics yields an MCC of 0.95, which is significantly better than other re-trained 
machine learning-based approaches and yields as the similar MCC as of re-trained SolarDiagnostics. We make the 
source code and datasets that we use to build and evaluate SolarDiagnostics publicly-available.   

1. Introduction 

Homeowners are increasingly deploying rooftop solar photovoltaic 
(PV) arrays due to the rapid decline in solar module prices. To illustrate, 
the cost of solar energy in $/W dropped an estimated ~80% from 2010 
to 2018, resulting in a ~700% increase in solar energy capacity in U.S. 
over the same period [1]. Solar power prices have now fallen below 
retail electricity rates in many areas, further increasing the incentive for 
homeowners to install solar modules [1]. In the first quarter of 2019, 
over ~70% of solar deployments in U.S. are continuously small-scale 
solar PV arrays from residential rooftops. Recent news [2] showed 
solar owners may spend up to $375 per year on the services to maintain 
their “degraded” rooftop solar PV systems, including damaged solar PV 
panel inspection, wiring damage, annual inspection, damage localiza
tion, and solar PV array cleaning, which typically are not covered in 
their purchase warranty. Thus, recently, there is a rising interest to 
inspect potential damage on rooftop solar PV arrays automatically and 
passively with a lower cost. 

Traditional approaches [3–5] relied on I–V curve and P–V 

characteristic monitoring of the target rooftop solar PV system in 
nominal and faulty conditions and had the accuracy as ~60%. These 
approaches require user expertise in measuring model parameters and 
hardware installation such as cameras and solar radiation sensors to 
collect training data. Thus, significant recent work focuses on 
data-driven approaches [6–12] that leverage machine learning tech
niques to train accurate classifiers to identify damages. These ap
proaches require significant amount of historical pure solar generation 
data, which may not be available due to the new solar sites become 
online, to calibrate their models, and also can not accurately distinguish 
solar PV array damage from other degradation, such as shading, dust, 
snow, cloudy, and so on. Thus, new techniques are necessary. 

To address this issue, we design a new system—SolarDiagnostics that 
can automatically detect and localize damage on solar PV arrays with a 
lower cost. Our hypothesis is that solar PV arrays are visually identifi
able in their rooftop images such that we can leverage image processing 
and deep learning techniques to automatically profile information. In 
evaluating our hypothesis, this paper makes the following contributions. 

Detection Challenge. We highlight numerous challenges that we 
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met to detect damages on solar PV arrays automatically using only their 
rooftop images. Rooftop solar PV arrays segmentation and damage 
identification are affected by numerous unknown variables, e.g., 
imbalanced training dataset, inaccurate shape and color features, shade, 
size, orientation, topography, and other outliers on rooftop. 

Damaged Solar PV Array Image Dataset Buildup. We leverage 
deep convolutional generative adversarial networks (DCGANs) to build 
an unsupervised approach to automatically generate 60,000 damaged 
solar PV array rooftop images. By carefully designing this approach, we 
insure that the discriminative model of the DCGANs has the worst ac
curacy to distinguish the “real” and “fake” images. In addition, we also 
collected groundtruth for each image, such as damage level and brand. 
In doing so, we are preparing a balanced dataset to train and evaluate 
our new approaches. 

SolarDiagnostics Design. We design a new system
—SolarDiagnostics that can automatically detect and localize damages 
on rooftop solar PV arrays with a lower cost (~$35). In essence, Solar
Diagnostics first leverages an unsupervised segmentation algorithm to 
isolate rooftop objects each image and extract solar panel residing 
contours. Then, SolarDiagnostics employs a convolutional neural net
works (CNNs) to accurately identify and characterize the damages in 
each contour. 

Implementation and Evaluation. We implement SolarDiagnostics 
in python using widely available open-source frameworks, including 
Pandas [13], OpenCV [14], Scikit-learn [15] and PyCUDA [16,17]. We 
evaluate SolarDiagnostics using our large damaged solar PV array image 
dataset and also by building a SolarDiagnostics prototype. We find that 
SolarDiagnostics can accurately detect damaged rooftop solar PV arrays 
and also learn the damage profiling information for each solar site. We 
evaluate SolarDiagnostics using multiple ways: (1) We compare Solar
Diagnostics’s results with the groundtruth labeled 60,000 rooftop im
ages that are generated using our DCGANs model. (2) We validate 
SolarDiagnostics’s detection results using the groundtruth image data 
for 350 sites that we fetched using Google Images API [18] and our prior 
work [19]. (3) We validate SolarDiagnostics’s profiling accuracy for 10 
“mock” solar PV arrays using the SolarDiagnostics prototype. 

Releasing Datasets and Source Code. We release all the datasets 
that are comprised of over 60,360 solar PV array rooftop images and the 
source code of SolarDiagnostics on our website [20]. 

2. Background and related work 

2.1. Problem statement 

Given a solar-powered home, we first want to build a new approach 
that can automatically fetch its rooftop image. We then present a new 
approach that can accurately segment rooftop objects and focus on solar 
panel residing contours in each image. We further seek to build a deep 
learning classifier to accurately identify the damage on each solar PV 
array. For each reported solar PV array, we also want to learn its 
profiling information, such as damage location, damage level and 
manufacture brand, which can be used to assist solar owners to repair or 
replace their solar PV arrays promptly. Formally, given a solar PV array- 
powered home Si, we first need to segment its rooftop objects 
Oi(1 ≤ i ≤ N) on rooftop image Ii into small “contours”—Ci, where N is 
the number of objects. Then, we will identify the contours that have 
damaged solar PV panels and report their damage level, damage loca
tion, and brand information. 

2.2. Related work 

Traditional approaches [3–5] focusing on engineering methods to 
detect faults of solar PV arrays can be classified into the following cat
egories: (1) statistical signal processing based approaches [21,22]; (2) 
I–V characteristics analysis [23–25]; (3) power loss function-based 
analysis [26–28]; and (4) voltage and current measurement based 

approaches [29–31]. The prior approaches [4,5] leverage these elec
trical methods to monitor the rooftop solar PV system in nominal and 
faulty conditions, respectively. However, these approaches all require 
hardware installation such as cameras, and solar radiation sensors to 
collect training data, and also user expertise in measuring model pa
rameters when building classifiers. 

In contrast, significant recent work focuses on data-driven ap
proaches [6–12] that leverage machine learning and deep learning 
techniques to train accurate machine learning or deep learning classi
fiers. The major issue is that these approaches typically require signifi
cant amount of historical pure solar generation data to calibrate their 
models, which may not be available due to the new solar sites become 
online, and also have the difficulty to distinguish solar PV array damage 
from other degradation, e.g., shading, dust, snow, and cloudy. Thus, new 
techniques are necessary. 

2.3. Summary 

As we had discussed in this section, the prior approaches that 
leverage electrical engineering methods typically require hardware 
installation to monitor and model the faulty and normal conditions. 
While, recent machine learning and deep learning based data analytics 
methods require significant amount of training data which is not always 
available. These valuable insights guide the development of our pro
posed technique—SolarDiagnostics. 

3. Detection challenges 

Highly imbalanced data. The prior work mainly builds machine 
learning or deep learning classifier using a high imbalanced datasets 
with ~80% rooftop images having no damage on their solar PV arrays. 
This is mainly due to the fact that damaged solar PV array image dataset 
are not immediately publicly-available. Thus, these approaches may not 
be able to accurately and reliably identify damaged solar PV arrays. 
These data-driven approaches may need more “negations” to achieve a 
reasonable accuracy. To address this challenge, we design a deep con
volutional generative adversarial networks (DCGANs)-based approach 
that can automatically generate a large amount of damaged solar PV 
array images. In doing so, we are able to build our SolarDiagnostics 
using a balanced training dataset that has the ratio of positive and 
negative samples as 1:1. More details are in Section 4.1. 

Automatic rooftop image segmentation. In addition to solar PV 
arrays, many other objects, such as ridge, structure, chimney, shade and 
window, may also present on each rooftop. In particular, the shape 
features of the ridges, structures and shades have significant overlapping 
with solar PV arrays. This makes these data analytical approaches 
having more difficulty to train a reasonably accurate classifier to 
distinguish different solar degradation. To address this issue, we design 
an unsupervised machine learning-based approach that integrates with 
our recent SolarFinder work [19] to automatically segment objects in 
each rooftop image and only focus on solar panel residing contours. 
More details can be found in Section 5.1. 

Inaccurate shape and color features. The shape and color features 
of rooftop solar PV arrays from different manufactures might look 
different in their rooftop images. In addition, the gap lines including 
gaps, bus bars and fingers on solar PV arrays, which are the spaces be
tween the solar cells and necessary to allow for thermal expansion of the 
cells when the panels heat in the sun, always present white rectangle 
noise bars in their rooftop images. These white noises in rooftop solar PV 
array images significantly reduce the damage detection accuracy. To 
address this challenge, we design an algorithm that leverages unsuper
vised learning approach to automatically remove these white “outliers” 
when performing damage detection using SolarDiagnostics. More details 
can be found in Section 5.2. 

Q. Li et al.                                                                                                                                                                                                                                        



Sustainable Computing: Informatics and Systems 32 (2021) 100595

3

4. Building large damaged image dataset 

In this section, we describe how we address the imbalanced data 
challenge. We design a new approach that leverages deep convolutional 
generative adversarial networks (DCGANs) to generate a large and 

balanced solar PV array damage image dataset. 

4.1. Image generator 

To represent image data more effectively, we use generative adver
sarial networks (GANs) [32] architecture to build our damaged solar PV 
array image generator. However, recent work [33] has shown that GANs 
model has some performance limitations. For instance, GANs might be 
unstable to train and thus resulting in generators that produce nonsen
sical, noisy and incomprehensible new artificial images. The recent work 
[34] presented a new GANs—deep convolutional GANs (DCGANs) that 
has mitigated these issues by replacing the deterministic pooling func
tion to strided convolution and using Rectified Linear Units (ReLU) 
activation in all generator layers, and leaky rectified linear unit (Leaky 
ReLU) activation in all discriminator layers. DCGANs has become the 
standard architecture to solve image generation problems. Fig. 1 shows 
the pipeline of our DCGANs network. Our DCGANs architecture is 
comprised of convolutional layers without max pooling or fully con
nected layers. We leverage convolutional stride and transposed convo
lution for downsampling and upsampling, respectively. The generator 
network uses a 100 × 1 noise vector. Our first layer is to project and 

Fig. 1. The pipeline of our DCGANs system structure.  

Fig. 2. The loss comparison results of discriminator and generator in 
our DCGANs. 

Fig. 3. The DCGANs generated rooftop solar PV array images that have six different damage levels.  
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reshape inputs, following this layer, we have five convolutional layers. 
For generator model, we use the ReLU activation function for all the 
layers except the final one, where we employ the Tanh activation 
function. Generator and Discriminator have almost the same architec
tures, but reflected. For discriminator model, we use the Leaky ReLU 
activation function for all the layers except the last layer where we use 
the Sigmoid activation function. 

4.2. Loss function 

Given a DCGANs model that is comprised of one image generator and 
one image discriminator. Our goal is to train a generator that can 
generate image samples that others (e.g., discriminator) cannot distin
guish them from the genuine source images. The generator—G is opti
mized to generate image samples that would be identified by the 
discriminator—D as the real image sample. Thus, the objective to design 
DCGANs model can be described as follows: 

max
D

{Es(logD(s)) + En(log(1 − D(G(n))))} (1)  

min
G
{En(log(1 − D(G(n))))} (2)  

where D(s) denotes the discriminator output that s is a real image and G 
(n) indicates the generated image sample using a noise—n. Note that, 

Es(logD(s)) =
∑1

m
[
logD(xi)

]
, where m denotes the number of the source 

image samples. As shown in Fig. 2, we find that our DCGANs model has 
achieved stable discriminator loss and generator loss after reaching at 
~300 epochs. 

4.3. Data augmentation 

We first collect 350 damaged solar PV array images using Google 
Images API [18] and our prior work—SolarFinder [19]. We use the 
Google Image API to search the healthy and damaged rooftops, then we 
use thresholding approach to classify the images. However, it is rare to 
find damaged rooftop images and we can only find 350 images. In 
particular, this is also the motivation that we design a DCGANs-based 
model to generate the large solar PV array rooftop images. In addi
tion, the actual images may not always look like these rooftop solar PV 
array images due to their different orientation, tilt, shading and other 
physical characteristics. To mimic these effects, we leverage multiple 
data argument techniques from TensorFlow [35], Open CV [14] and 
scikit-image [36], such as flip, rotation, crop, and translation operations. 

We first apply K-Means clustering algorithm to characterize the 
collected 350 damage image dataset. The key problem is to determine 
the optimal cluster size—K. In particular, we leverage elbow method 
[37] to find the optimal—K. Fig. 4 shows the relationship between K and 
within-cluster sum of square (WCSS) errors for K-Means clustering. We 
find that when choosing K = 6, the K-Means algorithm yields at the 
minimum WCSS. Fig. 3shows six different solar PV array images that are 
generated by our DCGANs model and have different damage levels. 

4.4. Summary 

In this section, we present a deep convolutional generative adver
sarial networks (DCGANs)-based approach that leverages multiple 
image processing techniques to automatically generate a large amount 
(~60,000) of damaged solar PV array images. The generator is opti
mized to generate image samples which would be classified by the 
discriminator as belonging to the real data distribution. By doing this, 
we are able to build our deep learning-based damage detection sys
tem—SolarDiagnostics using a well-balanced training dataset. 

5. Solar SolarDiagnostics design 

In addressing the detection challenges, we design a new system
—SolarDiagnostics that can automatically detect damage on a solar PV 

Fig. 4. The relationship between K and WCSS errors for K-Means clustering.  

Fig. 5. The pipeline overview of SolarDiagnostics.  
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array using only its rooftop image. In essence, SolarDiagnostics first 
integrates with our SolarFinder [19] to automatically segments rooftop 
images to solar PV array image contours and other rooftop object con
tours. Then, SolarDiagnostics leverages a CNNs-based deep learning 
classifier to detect any potential solar damage in each solar residing 
image contour. Finally, SolarDiagnostics applies solar damage level 
estimation, damage locator, and other characteristics estimators to 
further profile each damaged solar PV array. Fig. 5 shows the Solar
Diagnostics’s pipeline of the above operations. 

5.1. Segmenting rooftop images 

In addition to solar PV arrays, many other “outliers” objects such as 
ridge, structure, chimney, shade, and window may also present on solar 

PV array rooftops. Thus, after fetching the rooftop solar PV array images, 
SolarDiagnostics leverages an unsupervised multi-dimensional k-Means 
algorithm [38] to automatically segment each rooftop solar PV array 
image into a set of image contours Ci such that objects on the rooftop Ri 
are isolated. The goal of this segmentation is to ensure: given a rooftop 
Ri, we can assign each pixel based on its grayscale value into its best 
“fitting” cluster. We had found the optimal cluster size—k = 5 for a 
typical residential solar powered homes in our most recent work [19]. 
Eventually, SolarDiagnostics focuses on solar residing image contours 
only. 

5.2. Preprocessing solar PV array images 

Although SolarDiagnostics is only focusing on solar residing image 

Fig. 6. Noise detection and removing.  

Fig. 7. The overview of our CNNs architecture design.  
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contours, SolarDiagnostics may still see “outliers” in their image con
tours. Fig. 6(a) shows examples of these “outliers” that are mainly white 
lines such as gaps, bus bars, and fingers on solar PV arrays. These white 
lines always present while rectangle noise bars in their rooftop solar PV 
array images and their contours. Thus, as shown in Fig. 6(b), Solar
Diagnostics leverages K-Means clustering approach to filter out those 
white rectangle contours as shown in Fig. 6(a). SolarDiagnostics iden
tifies the vertex set for each rectangle contour, and then leverage noise 
reduction technique to track edge caused by hysteresis. As shown in 
Fig. 6(c), SolarDiagnostics tries to enlarge the rectangle “outlier” white 
bars at four different directions until no significant hysteresis is detec
ted. After removing those True Negative “outliers”, SolarDiagnostics is 
able to detect damage in solar PV array images shown in Fig. 6(d) using 
their actual greyscale value distributions. 

5.3. Detecting damaged solar arrays 

Next, we build a new convolutional neural networks (CNNs)-based 
deep learning classifier that can accurately identify damaged solar cells/ 
regions in each solar residing image contour. Below, we describe the 
design of our CNNs architecture. As shown in Fig. 7, our CNNs archi
tecture is comprised of input, convolutional layers (ReLU), max pooling, 
fully-connected layers (ReLU) and output. The inputs are 256 × 256 
solar PV array images, and the first two layers are convolutional layers 
which have 256 × 256 neurons with a rectified linear unit (ReLU). Then, 
we have another two convolutional layers that have 128 × 128 neurons 
with ReLUs. After these layers, we employ another 4 convolutional 
layers with ReLUs, and all these layers have 32 × 32 neurons. Finally, 
we leverage 4 convolutional layers with ReLUs, and these layers all have 
16 × 16 neurons. Among the different groups of convolutional layers, 
we have 2 × 2 max pooling which is used to down sample input solar PV 
array images and reduce its dimensionality. Two fully-connected layers 
with ReLUs have 1024 channels per each. The final layer in our design of 
CNNs architecture is the softmax layer that performs damage identifi
cation and thus contains 1 channel. Note that, this structure is our 
minimum recommendation to implement our SolarDiagnostics 
approach. More layers structure design may have better detection ac
curacy, however, the training time may be significantly increased. 

5.4. Profiling damaged solar arrays 

In addition to detecting damaged solar PV arrays, SolarDiagnostics 
can also profile each reported solar PV array. The profiling information 
for a damaged solar PV array may include damage level, damage loca
tion, brand detection and other information that is useful to assistant 
solar owners to better identify and make decisions to repair their rooftop 
solar PV systems. The proposed CNNs-based model in Section 5.3 is used 
to identity whether there is any damage on the given solar PV array. 
While, the following SVMs- and Random Forest-based reporting ap
proaches are used to further profile the damage situation. 

Reporting damage level. To classify the damage level for each 

damaged solar PV array, we leverage the supervised machine learning 
approach such as SVMs with linear kernel. The difference for Solar
Diagnostics to report binary damage detection results and different level 
damage detection is the input features when training the deep learning 
and machine learning classifier. In the evaluation section, we evaluate 
the performance accuracy for these two different scenarios, respectively. 

Reporting damage location. To localize damaged “portion” on 
solar PV arrays, we track the longitude and latitude for each image 
contour’s vertex in C-language library—SQLite3 database that imple
ments a small, fast, self-contained, high-reliability, full-featured, SQL 
database engine. Therefore, when SolarDiagnostics is reporting a 
damaged pixel in an image contour, we are able to track and cluster all 
the damage pixels/cells. We have included evaluation for this damage 
location reporting using Jaccard Similarity Index (JSI). 

Reporting manufacture brand. To assist solar owners to repair 
their damaged solar PV arrays, the solar panel manufacture brand in
formation might be necessary for the replacement and cost analytics 
purpose. In addition to report damaged solar PV arrays, SolarDiagnostics 
can also report their associated brand information simultaneously. As 
shown in Fig. 8(a) and (b), our insight is that different brand solar PV 
arrays have significant different patterns in their grayscale statistical 
learning results. SolarDiagnostics uses the pixel grayscale distribution 
features and leverages the Random Forest modeling to identify manu
facture brand information for each damaged solar PV array. Note that, 
rather than other analytics, SolarDiagnostics leverages regular non- 
damaged regions on a damaged solar PV array to predict the manufac
ture brand information. 

6. Implementation 

We implement SolarDiagnostics in python using open-source 
frameworks, including Pandas [13], OpenCV [14], Scikit-learn [15] 
and PyCUDA [16,17]. SolarDiagnostics leverages Google Image API 
[18]. Our current implementation fetches damaged solar PV array im
ages (800x800 pixels) from Internet. We use OpenCV, NumPy and 
Pandas for grayscale and RGB channel image data processing. We use 
the Scikit-learn [15] machine learning library in python to build our 
machine learning and deep learning approaches. The library supports 
multiple techniques including support vector machines (SVMs) with 
different kernel functions, multiple linear regression models, Random 
Forest, Decision Tree, KNN, and principal component analysis (PCA). 
For the CNNs-based SolarDiagnostics approach, we implement based on 
the framework from VGGnet [39], Scikit-learn [15], and OpenCV [14]. 
Finally, we schedule the batch jobs on our GPU servers to compare the 
MCC accuracy of 5 different approaches using CUDA. The server that we 
use to get all the benchmarking and evaluation results has resources as 
follows: (1) CPU: 2× Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz, (2) 
GPU: nVidia TITAN X (Pascal) (×8), (3) RAM: 128 GB, (4) OS: Linux 
CentOS 7. 

In addition, we also build a SolarDiagnostics prototype. As shown in 
Fig. 8 (c), our prototype uses down facing camera on the drone to 

Fig. 8. The comparison of statistical learning results for 2 different brand manufactures’ solar PV arrays using their grayscales.  
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capture images when flying over rooftops that have solar PV arrays 
installed. Our prototype has both of image output and video output. In 
particular, the video output can have HD 30 fps resolution which is 
sufficient for capturing ≥10 snapshots per rooftop. Our drone is flashed 
with Linux firmware which is open and easy for end users to control via 
mobile phone or Python scripts. The images and videos are synchronized 
via Wi-Fi to either Pi-3 based local SolarDiagnostics detecting system 
implementation or our SolarDiagnostics public APIs to be processed for 
identifying any potential damages. 

7. Experimental evaluation 

Below we describe our datasets, experimental setup, metrics used to 
evaluate our approaches, and evaluation results. 

7.1. Datasets 

Dataset 1. We use the large damaged solar PV array image dataset 
which is built in Section 4 and comprised of ~60,000 rooftop solar PV 
array images with the resolution as 1024 × 1024. In this dataset, overall, 
we have 10,000 images per each damage level. In addition, we also 
include damage level, damage location, brand information, and other 
installation details for each rooftop image. 

Dataset 2. We collect ~500 publicly-available solar PV array rooftop 
images using Google Images API. The ratio of the damaged to non- 
damaged solar PV array images is 1:1. These images are indicating the 
actual damaged solar PV arrays from U.S. Given a solar-powered home 
listed in this dataset, we also prepare its groundtruth data, including the 
damage levels, damage locations, brand information, and other instal
lation details for each solar PV array rooftop image. 

Dataset 3. We also use our drone-based SolarDiagnostics prototype 
to test the performance of SolarDiagnostics at 10 “mock” rooftops. The 
dataset has 10 “mock” residential rooftop images which are taken by HD 
camera of our prototype. Note that, our approach may achieve better 
accuracy if the camera and memory storage support video recording, 
which significantly increases the amount of the damage images. 

7.2. Experimental setup 

To better understand the benefits of different damage detecting ap
proaches, we implement and compare a group of “re-trained” and “pre- 
trained” solar PV array damage detection approaches, including the 
CNNs, SVMs (RBF), Random Forest, Decision Tree and KNN based 
approaches. 

Re-trained approaches. In this case, all of solar PV array damage 
approaches can access to damaged solar PV array images from their 
testing sites. For CNNs approaches, we also fine-tune the VGGnet using 
the information from the testing sites. In doing so, we are bench-marking 
the best performance of different approaches. 

Pre-trained approaches. In this case, all of solar PV array damage 
approaches cannot access to damaged solar PV array images from their 
testing sites. For CNNs approaches, we do not fine-tune the VGGnet 
using the information from the testing sites. In doing so, we are bench- 
marking the practical performance of different approaches. 

7.3. Evaluating metrics 

Below we describe the metrics that we use to evaluate Solar
Diagnostics and other approaches. 

Matthews correlation coefficient (MCC). To quantify the accuracy 
of different solar PV array damage(s) detection approaches, we use the 
Matthews correlation coefficient (MCC) [40], a standard measure of a 
binary classifier’s performance, where values are in the range − 1.0 to 
1.0, with 1.0 being perfect solar PV array damage detection, 0.0 being 
random solar PV array damage prediction, and − 1.0 indicating solar PV 
array damage detection is always wrong. The expression for computing 

MCC is below, where TP is the fraction of true positives, FP is the frac
tion of false positives, TN is the fraction of true negatives, and FN is the 
fraction of false negatives, such that TP+FP+TN+FN = 1. 

TP × TN − FP × FN
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (3) 

Cohen’s kappa. The Cohen’s kappa [41] is a measure of the 
agreement between two raters who each classify N items into C mutually 
exclusive categories. The definition is as follows, 

κ = 1 −
1 − po

1 − pe
(4)  

where po is the relative observed agreement among raters, and pe is the 
hypothetical probability of chance agreement, using the observed data 
to calculate the probabilities of each observer randomly seeing each 
category. If the classifiers are in complete agreement then κ should be 
close to 1. If there is no agreement among the classifiers other than what 
would be expected by chance, κ = 0. 

Jaccard Similarity Index (JSI). To quantify the accuracy of Solar
Diagnostics to predict the damage size of solar PV arrays, we use Jaccard 
Similarity Index (JSI) which is widely used in prior work to measure the 
similarly between detected damaged regions and groundtruth damaged 
regions. As a measure of similarity for the two sets of pixel data, with a 
range from 0% to 100%. The higher the percentage, the more precise 
predictions that SolarDiagnostics can do. It can be defined as follows, 

JSI =
rd ∩ rg

rd ∪ rg
(5)  

where rd denotes the detected damage region for a solar PV array, and rg 
indicates the groundtruth damage region for a solar PV array. 

7.4. Experimental results 

7.4.1. Comparing re-trained approaches 
We first compare SolarDiagnostics’s performance with fully re- 

trained machine learning approaches that have complete access to the 
rooftop images from testing solar sites. In this case, the 5 approaches 
split the dataset into training and testing using a ratio as 7:3 after cross- 
validation. Unsurprisingly, as shown in Table 1, SolarDiagnostics (with 
CNNs classifier) yields the best MCC—1.0, and is the best performing 
and the most sophisticated solar PV arrays damage detection approach. 
In addition, SolarDiagnostics (with CNNs classifier) has False Negative 
(FN) as 0%. We can also see that the re-trained SVMs-RBF, Random 
Forest, Decision Tree and KNN approach yields a MCC of 0.80, 0.80, 
0.77, and 0.87, respectively. 

Results: Comparing with the re-trained SVMs, Random Forest, Decision 
Tree and KNN approaches, re-trained SolarDiagnostics (with CNNs) yields 
the best MCC as 1.0 with False Negative as 0%, and thus is the best per
forming approach. 

Table 1 
The detection accuracy comparison of SolarDiagnostics when employing 
different classifiers.   

Model TP FN TN FP MCC 

Re-trained CNNs 100% 0% 100% 0% 1  
SVMs-RBF 99.1% 0.9% 78.6% 21.4% 0.803  
Random Forest 98.0% 2.0% 80.7% 19.3% 0.807  
Decision Tree 90.7% 9.3% 86.2% 13.8% 0.772  
KNN 100% 0% 85.2% 14.8% 0.870 

Pre-trained CNNs 94.2% 5.8% 100% 0 0.947  
SVMs-RBF 0.2% 99.8% 29.8% 70.2% − 0.744  
Random Forest 1.5% 98.5% 27.1% 72.9% − 0.749  
Decision Tree 23.2% 76.8% 19.3% 80.7% − 0.574  
KNN 0.2% 99.8% 29.8% 70.2% − 0.695  
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7.4.2. Comparing pre-trained approaches 
We then compare the accuracy of the pre-trained ML approaches and 

SolarDiagnostics that do not have any access to the rooftop images from 
testing solar sites. In this case, the 5 approaches split the dataset into 
training dataset and testing dataset using a ratio of 7:3 without cross- 
validation between the two datasets. Note that, SolarDiagnostics (with 
CNNs) does not use any information from testing sites to fine-tune its 
CNNs model at this time. As shown in Table 1, SolarDiagnostics (with 
CNNs) yields the best MCC as 0.947 and all other 5 machine learning 
classifiers have reported negative MCC values. This simply indicates the 
machine learning approaches that leverage SVMs-RBF, Random Forest, 
Decision Tree, or KNN classifier are not able to reliably distinguish the 
damaged from the non-damaged solar PV arrays. 

Results: Comparing with the pre-trained machine learning approaches, 
SolarDiagnostics is the best performing approach and it yields the best MCC 
as 0.95, which is ~2 times better than decision tree based machine learning 
approach. 

7.4.3. Pre-trained vs re-trained approaches 
The goal of this evaluation is to evaluate the ability of Solar

Diagnostics to work in real practice. Note that the major difference be
tween pre-trained and re-trained approaches is whether new solar PV 
array testing images are included in the training dataset of Solar
Diagnostics or not. Re-trained approaches have all the access to the 
testing solar PV array images to calibrate their models. While, pre- 
trained approaches do not have any access to any testing solar PV 
array images, and thus is to identity the damage on solar PV array using 
their ready-to-use models. In real practice, SolarDiagnostics works in the 
pre-trained manner. 

Table 1 shows that the MCC reported by the pre-trained Solar
Diagnostics approach is significantly better than that of the re-trained 
machine learning (ML) approaches, including SVMs-RBF, Random For
est, Decision Tree, and KNN. In addition, the pre-trained Solar
Diagnostics (CNNs) approach yields the MCC (~0.95) which is slight 
worse than that (~1.0) of the re-trained SolarDiagnostics (CNNs) 
approach. This is mainly due to the fact that the pre-trained CNNs 
approach cannot leverage any information from testing images to fine- 
tune its neural network. Among all the pre-trained approaches, pre- 
trained CNNs approach has minimum FN as only 5.8%. Note that “re- 
trained” results are provided as the upper bound reference of our 
SolarDiagnostics approach, in real practice, SolarDiagnostics works in 
the “pre-trained” mode. 

Results: Comparing with both of the re-trained and pre-trained ap
proaches, SolarDiagnostics is the best and stable pre-trained performing 
approach and it yields the best MCC as 0.95, which is almost the same as re- 
trained SolarDiagnostics approach. 

7.4.4. Quantifying SolarDiagnostics’s accuracy 
We then plot the receiver operating characteristic (ROC) curves for 5 

different approaches. The goal of this examination is to evaluate the 
output quality for these 5 different approaches. ROC curves typically 
feature TP rate on the Y-axis, and FP rate on the X-axis. Thus, that says, 
the top left corner of the plot is the “ideal”—a false positive rate of zero, 
and a true positive charge of one. In addition, a larger area under the 
curve (AUC) is typically better. As shown in Fig. 9, for the re-trained 
comparison, our new approach—SolarDiagnostics stays at the top left 
corner and overlaps with the SVMs-RBF approach. In addition, the AUC 
under the SolarDiagnostics curve has the largest area. Therefore, among 
all the approaches examined in Fig. 9, SolarDiagnostics is the best binary 
classier when detecting damages on rooftop solar arrays. 

Results: SolarDiagnostics’s ROC curve stays on the top of the left corner 
and has the largest AUC. Thus, comparing with other ML-based approaches, 
SolarDiagnostics is the best binary classifier for solar PV array damage 
detection. 

7.4.5. Profiling the damage of solar PV arrays 
We examine the accuracy of SolarDiagnostics when predicting solar 

PV array damage using Dataset 2 as discussed previously in Section 7.1. 
SolarDiagnostics first fetches the 500 homes rooftop images and then 
segments them into contours. SolarDiagnostics then apply the unsu
pervised hybrid approach over those contours to identify solar panels 
and learning the physical characteristics, e.g., size, orientation, and 
shade. 

Identifying damage level. Rather than comparing binary detection 
results for the machine learning approaches and SolarDiagnostics 
approach, we also compare the performance accuracy of all approaches 
when they reporting damage levels. We employ the metric—MCC to 
report the accuracy when SolarDiagnostics identifying the 6 different 
damage levels. As discussed in Section 7, to report the damage level of 
solar PV array, SolarDiagnostics first examines the pixels that are 
identified as damage in each solar PV array contours Then, Solar
Diagnostics performs a union operation to add up all the contours for the 
same rooftop to report the damage level. As shown in Table 2, Solar
Diagnostics also yields the best MCC as 0.83, the best Cohen_Kappa as 
0.83, and the best F1 as 0.86. Note that, to report the results in Table 2, 
we re-sampled the damaged solar PV array dataset such that each 
damage level has 200 images. 

Results: Comparing with the pre-trained approaches, SolarDiagnostics 
yields the best MCC as 0.83, the best Cohen-Kappa as 0.83, and the best F1 as 
0.86. Thus, SolarDiagnostics is the best performing pre-trained approach 
when reporting 6 different damage levels. 

Localizing detected solar PV arrays. We employ the metri
c—Jaccard Similarity Index (JSI) to report the accuracy. To report the 
location of solar PV array damage, SolarDiagnostics first examines the 
pixels that are identified as solar PV array contours. Then, Solar
Diagnostics performs a union operation to add up all the contours for the 
same rooftop to report the damage size. We find that SolarDiagnostics is 
able to report a JSI as 78.52% when averaging on the results of Dataset 

Fig. 9. The comparison of receiver operating characteristic (ROC) curves when 
applying different classifiers. 

Table 2 
The comparison of SolarDiagnostics detection accuracy when employing pre- 
trained SVMs, Random Forest, Decision Tree, KNN, and CNNs to detect 6 
different damage levels for solar PV arrays.  

Model Accuracy F1 Cohen_Kappa Precision Recall MCC 

CNNs 
(VGG) 

85.9% 0.859 0.830 0.872 0.859 0.832 

SVMs 
(RBF) 

74.0% 0.738 0.685 0.761 0.840 0.690 

Random 
Forest 

52.5% 0.456 0.424 0.559 0.525 0.451 

Decision 
Tree 

64.0% 0.641 0.568 0.643 0.640 0.568 

KNN 85.2% 0.854 0.822 0.876 0.852 0.826  
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#3. 
Detecting brands of solar PV arrays. We leverage statistical 

learning methods (e.g., KNN, SVMs) to identify the manufacture brand 
for each reported damaged solar PV array. As shown in Fig. 8, the two 
different brand solar PV arrays has significant different pattern in their 
grayscale distribution. Using Dataset 3, we find that SolarDiagnostics 
can report the solar PV array’s manufacture brand within an accu
racy—MCC of 1.0. Note that, the prior data analytics-based approaches 
do not provide or discuss the damage localization. The goal of this brand 
profiling is to assist solar owners to better estimate the cost to repair 
damages on their rooftop solar PV arrays. In addition, we also exam 
SolarDiagnostics’ brand detection accuracy on different damage level 
images. As shown in Table 3, SolarDiagnostics yields the MCC of brand 
detection in the range of 0.69-0.83 over the solar PV array images from 
different damage levels. 

Results: In addition to accurately detect damage on solar PV arrays, 
SolarDiagnostics is able to report accurate profiling information, e.g., damage 
location, and manufacture brand, simultaneously. 

Note that, SolarDiagnostics’s approach to profiling damaged solar PV 
arrays is orthogonal to the other aspects of the techniques and is 
“pluggable,” such that we could use other new machine learning ap
proaches to better estimate the profiling information. 

8. Conclusion and future work 

We design a new defense system—SolarDiagnostics that can auto
matically detect and localize damage on rooftop solar PV arrays using 
only their rooftop images. In essence, SolarDiagnostics first leverages an 
unsupervised segmentation algorithm to isolate the objects on rooftops 
to extract solar panel residing contours. Then, SolarDiagnostics employs 
a deep convolutional neural networks (CNNs) to accurately identify and 
characterize any damage that may exist in each image contour. We 
evaluate SolarDiagnostics using 60,360 damaged solar array images 
generated and by building a prototype. We found that SolarDiagnostics 
is able to yield an MCC as of 1.0 when detecting damage on solar PV 
arrays. In addition, pre-trained SolarDiagnostics yields a MCC of 0.95, 
which is significantly better than the re-trained ML approaches and is 
the same as the re-trained SolarDiagnostics. Thus, Solar- Diagnostics 
achieves similar accuracy without access to any training data from 
testing solar sites as a fully re-trained approach with complete access to 
such training image data. We plan to implement the optimization of 
SolarDiagnostics profiling module to report more accurate solar PV 
array damage estimations. We also plan to learn the performance ac
curacy of SolarDiagnostics using different type of images (e.g., Tesla roof 
shingles). In addition, we are also planning to host a SolarDiagnostics 
API server such that users can directly use our SolarDiagnostics damage 
detecting service directly via their remote API calls. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Partially supported by Cyber Florida Collaborative Seed Program 
and National Security Agency’s National Centers of Academic Excel
lence in CybersecurityProgram. 

References 

[1] U.S. Energy Information Administration, Electricity Monthly Update, 2016. 
https://www.seia.org/solar-industry-research-data. 

[2] How Much Does It Cost to Clean and Maintain Solar Panels?, 2020. https://www.se 
ia.org/solar-industry-research-data. 

[3] A. Mellit, G.M. Tina, S.A. Kalogirou, Fault detection and diagnosis methods for 
photovoltaic systems: a review, Renew. Sustain. Energy Rev. 91 (2018) 1–17. 

[4] S. Sarikh, M. Raoufi, A. Bennouna, A. Benlarabi, B. Ikken, Photovoltaic system fault 
identification methodology based on iv characteristics analysis, AIP Conference 
Proceedings, vol. 2123 (2019) 020037. 

[5] M. Dhimish, V. Holmes, B. Mehrdadi, M. Dales, The impact of cracks on 
photovoltaic power performance, J. Sci.: Adv. Mater. Dev. 2 (2) (2017) 199–209. 

[6] S. Rao, S. Katoch, P. Turaga, A. Spanias, C. Tepedelenlioglu, R. Ayyanar, H. Braun, 
J. Lee, U. Shanthamallu, M. Banavar, et al., A cyber-physical system approach for 
photovoltaic array monitoring and control, 2017 8th International Conference on 
Information, Intelligence, Systems & Applications (IISA) (2017) 1–6. 

[7] S. Iyengar, S. Lee, D. Sheldon, P. Shenoy, Solarclique: detecting anomalies in 
residential solar arrays, Proceedings of the 1st ACM SIGCAS Conference on 
Computing and Sustainable Societies (2018) 1–10. 

[8] M. Gan, C. Wang, et al., Fault feature enhancement for rotating machinery based 
on quality factor analysis and manifold learning, J. Intell. Manuf. 29 (2) (2018) 
463–480. 

[9] A. Livera, M. Theristis, G. Makrides, G.E. Georghiou, Recent advances in failure 
diagnosis techniques based on performance data analysis for grid-connected 
photovoltaic systems, Renew. Energy 133 (2019) 126–143. 

[10] X. Zhao, J. Liang, F. Cao, A simple and effective outlier detection algorithm for 
categorical data, Int. J. Mach. Learn. Cybern. 5 (3) (2014) 469–477. 

[11] R. Hariharan, M. Chakkarapani, G. Saravana Ilango, C. Nagamani, A method to 
detect photovoltaic array faults and partial shading in pv systems, IEEE J. 
Photovolt. 6 (5) (2016) 1278–1285. 

[12] R. Platon, J. Martel, N. Woodruff, T.Y. Chau, Online fault detection in pv systems, 
IEEE Trans. Sustain. Energy 6 (4) (2015) 1200–1207. 

[13] Pandas. https.//pandas.pydata.org/. 
[14] OpenCV. https.//opencv.org/. 
[15] Scikit-Learn Machine Learning in Python. https://scikit-learn.org/stable/. 
[16] PyCUDA. https.//mathema.tician.de/software/pycuda/. 
[17] An Even Easier Introduction to Cuda. https://devblogs.nvidia.com/even-easier-intr 

oduction-cuda/. 
[18] Google Images API: Serpapi. https://serpapi.com/images-results. 
[19] Q. Li, Y. Feng, Y. Leng, D. Chen, Solarfinder: automatic detection of solar 

photovoltaic arrays, Proceedings of the 19th ACM/IEEE International Conference 
on Information Processing in Sensor Networks (2020) 100–111. 

[20] Solardiagnostics. https.//github.com/cyber-physical-systems/SolarDiagnostics. 
[21] M. Davarifar, A. Rabhi, A. El-Hajjaji, M. Dahmane, Real-time model base fault 

diagnosis of pv panels using statistical signal processing, 2013 International 
Conference on Renewable Energy Research and Applications (ICRERA) (2013) 
599–604. 

[22] M. Banavar, H. Braun, S.T. Buddha, V. Krishnan, A. Spanias, S. Takada, 
T. Takehara, C. Tepedelenlioglu, T. Yeider, Signal processing for solar array 
monitoring, fault detection, and optimization, Synthesis Lectures on Power 
Electronics 7 (1) (2012) 1–95. 

[23] D. Stellbogen, Use of pv circuit simulation for fault detection in pv array fields, 
Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference- 
1993 (Cat. No. 93CH3283-9) (1993) 1302–1307. 

[24] E.A. Kawam, E.A. Kawam, Photvoltaic solar array health monitor, US Patent A 12/ 
156,935 (2008). 

[25] S. Fadhel, C. Delpha, D. Diallo, I. Bahri, A. Migan, M. Trabelsi, M. Mimouni, Pv 
shading fault detection and classification based on iv curve using principal 
component analysis: application to isolated pv system, Solar Energy 179 (2019) 
1–10. 

[26] M.R. Maghami, H. Hizam, C. Gomes, M.A. Radzi, M.I. Rezadad, S. Hajighorbani, 
Power loss due to soiling on solar panel: a review, Renew. Sustain. Energy Rev. 59 
(2016) 1307–1316. 

[27] S. Rao, A. Spanias, C. Tepedelenlioglu, Solar array fault detection using neural 
networks, in: 2019 IEEE International Conference on Industrial Cyber Physical 
Systems (ICPS), IEEE, 2019, pp. 196–200. 

[28] Y. Zhao, L. Yang, B. Lehman, J.-F. de Palma, J. Mosesian, R. Lyons, Decision tree- 
based fault detection and classification in solar photovoltaic arrays, in: 2012 
Twenty-Seventh Annual IEEE Applied Power Electronics Conference and 
Exposition (APEC), IEEE, 2012, pp. 93–99. 

[29] X. Xu, H. Wang, Y. Zuo, Method for diagnosing photovoltaic array fault in solar 
photovoltaic system, in: 2011 Asia-Pacific Power and Energy Engineering 
Conference, IEEE, 2011, pp. 1–5. 

[30] K.A. Kim, G.-S. Seo, B.-H. Cho, P.T. Krein, Photovoltaic hot-spot detection for solar 
panel substrings using ac parameter characterization, IEEE Trans. Power Electron. 
31 (2) (2015) 1121–1130. 

Table 3 
The brand detection accuracy comparison of SolarDiagnostics on solar PV array 
arrays with 6 different damage levels.  

Damage level F1 MCC 

Level 0 0.859 0.832 
Level 1 0.840 0.690 
Level 2 0.525 0.451 
Level 3 0.640 0.568 
Level 4 0.852 0.826 
Level 5 0.852 0.826  

Q. Li et al.                                                                                                                                                                                                                                        

https://www.seia.org/solar-industry-research-data
https://www.seia.org/solar-industry-research-data
https://www.seia.org/solar-industry-research-data
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0015
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0015
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0020
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0020
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0020
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0025
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0025
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0030
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0030
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0030
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0030
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0035
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0035
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0035
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0040
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0040
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0040
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0045
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0045
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0045
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0050
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0050
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0055
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0055
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0055
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0060
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0060
http://https.//pandas.pydata.org/
http://https.//opencv.org/
https://scikit-learn.org/stable/
http://https.//mathema.tician.de/software/pycuda/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://serpapi.com/images-results
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0095
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0095
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0095
http://https.//github.com/cyber-physical-systems/SolarDiagnostics
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0105
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0105
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0105
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0105
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0110
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0110
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0110
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0110
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0115
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0115
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0115
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0125
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0125
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0125
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0125
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0130
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0130
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0130
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0135
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0135
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0135
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0140
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0140
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0140
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0140
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0145
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0145
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0145
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0150
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0150
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0150


Sustainable Computing: Informatics and Systems 32 (2021) 100595

10

[31] Y. Zhao, B. Lehman, R. Ball, J. Mosesian, J.-F. de Palma, Outlier detection rules for 
fault detection in solar photovoltaic arrays, in: 2013 Twenty-Eighth Annual IEEE 
Applied Power Electronics Conference and Exposition (APEC), IEEE, 2013, 
pp. 2913–2920. 

[32] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courville, Y. Bengio, Generative adversarial nets, Advances in Neural 
Information Processing Systems (2014) 2672–2680. 

[33] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia, B. Raducanu, 
Transferring gans: generating images from limited data, Proceedings of the 
European Conference on Computer Vision (ECCV) (2018) 218–234. 

[34] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks, 2015. arXiv:1511.06434. 

[35] TensorFlow. https://www.tensorflow.org/. 
[36] scikit-image, 2020. https.//scikit-image.org/. 
[37] Elbow Method. https.//www.scikit-yb.org/en/latest/api/cluster/elbow.html. 
[38] K-means. https.//scikit-learn.org/stable/modules/generated/sklearn.cluster.KMe 

ans.html/. 
[39] Very Deep Convolutional Networks for Large-scale Visual Recognition. https:// 

www.robots.ox.ac.uk/vgg/research/very_deep/. 
[40] S. Boughorbel, F. Jarray, M. El-Anbari, Optimal classifier for imbalanced data using 

Matthews correlation coefficient metric, PLOS ONE 12 (6) (2017) 
e0177678–e0177678. 

[41] M.L. McHugh, Interrater reliability: the kappa statistic, Biochem. Med.: Biochem. 
Med. 22 (3) (2012) 276–282. 

Q. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0155
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0155
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0155
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0155
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0160
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0160
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0160
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0165
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0165
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0165
https://www.tensorflow.org/
http://https.//scikit-image.org/
http://https.//www.scikit-yb.org/en/latest/api/cluster/elbow.html
http://https.//scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html/
http://https.//scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html/
https://www.robots.ox.ac.uk/vgg/research/very_deep/
https://www.robots.ox.ac.uk/vgg/research/very_deep/
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0200
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0200
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0200
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0205
http://refhub.elsevier.com/S2210-5379(21)00083-4/sbref0205

	SolarDiagnostics: Automatic damage detection on rooftop solar photovoltaic arrays
	1 Introduction
	2 Background and related work
	2.1 Problem statement
	2.2 Related work
	2.3 Summary

	3 Detection challenges
	4 Building large damaged image dataset
	4.1 Image generator
	4.2 Loss function
	4.3 Data augmentation
	4.4 Summary

	5 Solar SolarDiagnostics design
	5.1 Segmenting rooftop images
	5.2 Preprocessing solar PV array images
	5.3 Detecting damaged solar arrays
	5.4 Profiling damaged solar arrays

	6 Implementation
	7 Experimental evaluation
	7.1 Datasets
	7.2 Experimental setup
	7.3 Evaluating metrics
	7.4 Experimental results
	7.4.1 Comparing re-trained approaches
	7.4.2 Comparing pre-trained approaches
	7.4.3 Pre-trained vs re-trained approaches
	7.4.4 Quantifying SolarDiagnostics’s accuracy
	7.4.5 Profiling the damage of solar PV arrays


	8 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgements
	References


